Productivity Improvement Of Seaweed (Gracilaria verrucosa) Fertilized With Vermicompost Made From Different Organic Wastes

IJEP 41(6): 613-620 : Vol. 41 Issue. 6 (June 2021)

Andi Rahmad Rahim1* and Rosmarlinasiah2

1. Universitas Muhammadiyah Gresik, Aquaculture Study Programme, Faculty of Agriculture, Gresik, Indonesia
2. Universitas Halu Oleo Kendari, Faculty of Forestry and Environmental Sciences, Kendari, Indonesia

Abstract

The development of profitable Gracilaria verrucosa seaweed cultivation is possible because of the high market demand for gelatine (agarose). These advantages make Gracilaria verrucosa cultivation attractive but problems of decreasing productivity are encountered, due to the use of chemical/inorganic fertilizers. In this study, we investigated the use of vermicompost fertilizer, from different organic wastes feed waste, reed waste (Imperata) and banana stem waste and their effect on the productivity of Gracilaria verrucosa seaweed. The data were analysed using ANOVA and the Tukey test. The results showed that the lengths of the short and long axes of the seaweed cells were 165.0-227.3 mm and 170.3-253.7 mm, respectively. The daily growth rate was 0.95-1.61% per day. The agar yield quality on day 0 was 12.4-16.0% and on day 42, it was 24.6-30.6%. The nitrogen content of Gracilaria verrucosa seaweed on day 0 was 1.50-1.86% and 2.93-3.60% on day 42 while the phosphorus content on day 0 was 0.13-0.22% and 0.41-0.61% on day 42. Treated banana stem waste is the best waste to increase the growth and quality of seaweed.

Keywords

Gracilaria verrucosa, Mineral content, Growth, Cell size, Vermicompost

References

  1. Ilknur, A. K., et al. 2011. Gracilaria verrucosa (Hudson) papenfuss culture using an agricultural oganic fertilizer. Fresenius Env. Bulletin. 20(8a): 2156-2162.
  2. Manuhara, G. J., D. Praseptiangga and R. A. Riyanto. 2016. Extraction and characterization of refined K-carrageenan of red algae [Kappaphycus alvarezii (Doty ex P. C. Silva, 1996)] originated from Karimun Jawa Islands. Aquatic Procedia. 7: 106-111. DOI: https://doi.org/10.1016/j.aqpro.2016.0 7.014.
  3. Morales, M., R., A. G. Sanchez and P. S. Rodrigo. 2014. Evaluation of vermicompost, slumgum compost and green/pruning wastes compost and their mixes as growing media for horticultural production. Scientia Horticulturae. 172: 155-160. DOI: 10.1016/j.scienta.2014.D3.048.
  4. Mohee, R. and N. Soobhany. 2014. Comparison of heavy metals content in compost against their mixes as growing media for horticultural production and slumgum compost, vermicompost. Resour. Conser. Recycling. 92: 206-213.
  5. Rahim, A. R., et al. 2016. Combination of vermicompost fertilizer, carbon, nitrogen and phosphorus on cell characteristics, growth and quality of agar seaweed Gracilaria verrucosa. Nature Env. Poll. Tech., 15(4): 1153-1160.
  6. Fadilah, S., et al. 2016. Growth, morphology and growth related hormone level in Kappaphycus alvareziiproduced by mass selection in Gorontalo waters, Indonesia. Hayati J. Biosci. 23(1): 29-34. DOI10.4308/hjb.23.1.29.
  7. Rahim, A. R., et al. 2015. Cells characteristics, growth and quality of Gracilaria verrucosa seaweed production with different doses of vermicompost fertilizer. Int. J. Sci. Tech. Eng., 2(2): 172-176.
  8. Rahim, A. R. 2018. Application of seaweed Gracilaria verrucosa tissue culture using different doses of vermicompost fertilizer. Nature Env. Poll. Tech., 17(2): 661-665.
  9. Rahim, A. R. 2018. Utilization of organic wastes for vermicomposting using Lumbricus rubellus in increasing quality and quantity of seaweed Gracilaria verrucosa. Asian J. Microbiol. Biotech. Env. Sci., 20(2): S17–S23.
  10. Fitria, M. and M. W. Fida. 2015. Aqueous-methanol extract of Gracilaria verrucosainduces cytochromec release from mitochondria. Procedia Chem., 16: 407-412. DOI: 10.1016/j.proche.2015. 12.071.
  11. Hasseltrom, L., et al. 2018. The impact of seaweed cultivation on ecosystem services – A case study from the west coast of Sweden. Marine Poll. Bulletin. 133: 53-64. DOI: 10.1016/j.marpolbul.2018.05.005.
  12. Rejeki, S., et al. 2018. The effect of three cultivation methods and two seedling types on growth, agar content and gel strength of Gracilaria verrucosa. Egyptian J. Aquatic Res., 44(1): 65-70. DOI: 10.1016/j.ejar.2018.01.001.
  13. Kasim, M. and A. Mustafa. 2017. Comparison growth of Kappaphycus alvarezii(Rhodophyta, Solieriaceae) cultivation in floating cage and longline in Indonesia. Aquaculture Reports. 6: 49-55. DOI: 10.1016/j. aqrep.2017.03.004.
  14. Onwu, C., et al. 2018. Influence of organic fertilizer (Nomau®) on soil, leaf nutrient content, growth and yield of physic nut (Jatropha curcas) in Makurdi, North Central, Nigeria. Asian J. Soil Sci. Plant Nutrition. 3(2): 1-11. DOI: 10.9734/AJSSPN/201.
  15. Liu, X. Y., G. Ren and Y. Shi. 2011. The effect of organic manure and chemical fertilizer on growth and development of Stevia rebaudiana Bertoni. Energy Procedia. 5: 1200-1204. DOI: 10.1016/j.egy pro.2011. 03.210.
  16. Beaumont, A., P. Boudry and K. Hoare. 2010. Biotechnology and genetics in fisheries and aquaculture (2nd edn). Wiley-Blackwell Publisher. DOI: 10.1002/9781444318791.
  17. Venugopal, Vazhiyil. 2011. Marine polysaccharides. In Food application. CRC Press, Boca Raton, Florida. pp 286-287. DOI: 10.1080/10498850.2012.651 703.
  18. Roleda, Y. M. and L. H. Catriona. 2019. Seaweed nutrient physiology: Application of concepts to aquaculture and bioremediation. Phycologia. 58 (5): 552-562. DOI: 10.1080/00318884.2019.162 2920.
  19. Perikanan, T., B. S. Julianto and Badrudin. 2014. Seaweed culture Gracilaria sp. in pond (1st edn). WWF, South Jakarta, Indonesia.
  20. Balmori, D. M., et al. 2013. Molecular characteristics of vermicompost and their relationship to preservation of inoculated nitrogen-fixing bacteria. J. Anal. Appl. Pyrolysis. 104: 540-550. DOI: 10.10 16/j.jaap.2013.05.015.
  21. Diacono, M. and F. Montemurro. 2015. Effectiveness of organic wastes as fertilizers and amendments in salt affected soils. Agriculture. 5(2): 221-230. DOI: 10.3390/agriculture5020221.
  22. Costa-Lima, J. L., et al. 2018. Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing. Brazilian J. Infect. Dis., 22(2): 129-136. DOI: 10.1016/j.bjid.2018.03,003.
  23. Rahim, A. R., Rosmarlinasiah and S. Ruhumuddin. 2019. Productivity improvement of milkish and seaweed polyculture using vermicomposting fertilizer from sources of waste. Int. J. Recent Tech. Eng., 8(3): 1377-1381.
  24. Weil, R. R. and N. C. Brady. 2017. Phosphorous and potassium. In The nature and properties of soils (15th edn, chapter 4). Pearson, Columbus, USA. pp 643-695.
  25. Kim, J. K., et al. 2017. Seaweed aquaculture: Cultivation technologies, challenges and its ecosystem services. Algae. 3(2): 1-13. DOI: 10.4490/algae.2017.32.3.3.
  26. Radulovich, R., et al. 2015. Farming of seaweeds. In Seaweed sustainability – Food and nonfood applications (1st edn). Elsevier Publisher, Amsterdam. pp 27-59. DOI: 10.1016/B978-0-12-418697-2.00003-9.