Removal of Rhodamine 6G using Prosopis spicigera L. Wood Carbon-iron Sulphide Composite

IJEP 42(12): 1425-1436 : Vol. 42 Issue. 12 (December 2022)

Ramasubbu Dhana Ramalakshmi1, Mahalingam Murugan2* and Vincent Jeyabal3

1. Rani Anna Government College for Women, Department of Chemistry, Tirunelveli – 627 008, Tamil Nadu, India; Affiliated to Manonmanian Sundaranar University, Abishekapatti, Tirunelveli – 627 012, Tamil Nadu, India
2. Sri K.G.S. Arts College, Department of Chemistry, Srivaikuntam – 628 619, Thoothukudi, Tamil Nadu, India
3. St. Xavier’s College (Autonomous), Department of Chemistry, Palayamkottai, Tirunelveli-627 002, Tamil Nadu, India


The present study reports the preparation and usage of Prosopis spicigera L. wood carbon-iron sulphide composite (PsLw carbon-iron sulphide composite) for the effective removal of Rhodamine 6G (Rh 6G) from aqueous solutions. The characterization of the adsorbent was made by FTIR, SEM, BET and potentiometric methods. The effect of the adsorption of dye was measured in terms of pH, contact time, initial concentration, temperature and in the presence of other ions. The batch and kinetic study were performed at pH=6.0. The maximum adsorption capacity is found to be 33.14 mg/g for an initial concentration of 20 mg/L at pH=6.0. The adsorption isotherm fits  Langmuir isotherm and adsorption kinetics follows pseudo-second order model. Thermodynamic studies exhibit the adsorption to be feasible, spontaneous and endothermic in nature. Column analysis was evolved with Thomas model.


Adsorption, Kinetics, Mass transfer, Prosopis spicigera L. wood carbon, Rhodamine 6G, Thomas model


  1. Robinson, T., et al. 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Tech., 77: 247–255.
  2. Yaseen, D.A. and M. Scholz. 2019. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int. J. Env. Sci. Tech.,16: 1193–1226.
  3. Pino, E., et al. 2020. Photocatalytic degradation of aqueous Rhodamine 6G using supported TiO2catalysts. A model for the removal of organic contaminants from aqueous samples. Front. Chem., 8: 365.
  4. Walker, G.M., et al. 2003. Kinetics of a reactive dye adsorption onto dolomitic sorbents. Water Res., 37(9): 2081-2089.
  5. Stydini, M., I.K. Dimitris and X.E. Verykios. 2004. Visible light-enduced photocatalytic degradation of acid orange 7 in aqueous TiO2suspensions. Appl. Catal. Env., 47: 189-201.
  6. Wesemberg, D., F. Buchon and S.N. Agathos. 2002. Degradation of dye-containing textile effluent by the agaric white-rot fungus Clitocybula dusenii. Biotech. Lett., 24: 989–993.
  7. Valeria, P., et al. 2008. Biosorption of simulated dyed effluents by inactivated fungal biomasses. Bioresour. Tech., 99: 3559-3567.
  8. Farris, R.E. 1984. Xanthene dyes: Kirk-Othmer encyclopedia of chemical technology. John Wiley and Sons, Inc., New York.
  9. Lutic, D., et al. 2012. Photocatalytic treatment of Rhodamine 6G in wastewater using photoactive ZnO. Int. J. Photoenergy. DOI:10.1155/2012/475 131.
  10. Halterman, R.L., et al. 2010. Inclusion complexes of cationic xanthene dyes in cucurbit [7] uril. J. Incl. Phenom. Macrocyl. Chem., 66: 231 –241.
  11. Tang, S.K., et al. 2012. Sonocatalytic degradation of Rhodamine B in aqueous solution in the presence of TiO2coated activated carbon. Int. J. Env. Sci. Dev., 3(1):110-115.
  12. French, J.E. 1989. Toxicology and carcinogenesis studies of Rhodamine 6G. U. S. Department of Health and Human Services. NIH Publication No. 89-2819.
  13. Ingale, S.V., et al. 2012. TiO2-polysulphone beads for use in photo-oxidation of Rhodamine B. Soft Nanosci. Lett., 2: 67 –70.
  14. Khalfaoui, N., et al. 2012. Electrochemical oxidation of the xanthene dye Rhodamine 6G by electrochemical advanced oxidation using Pt and BDD anodes. Curr. Org. Chem., 16: 2083– 2090.
  15. Amuda, O. and I. Amoo. 2007. Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment. J. Hazard. Mater., 141(3): 778-783.
  16. Lee, K. P., T.C. Arnot and D. Mattia. 2011. A review of reverse osmosis membrane materials for desalination-development to date and future potential. J. Memb. Sci., 370(1-2): 1-22.
  17. Ruthven, D.M. 1984. Kinetics of sorption in batch systems. In Principal of adsorption and adsorption process (chapter 6). Wiley, New York.
  18. Oliveria, L.C.A., et al. 2002. Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon. 40: 2177-2183.
  19. Zhang, H.L., et al. 2013. Preparation of magnetic composite hollow microsphere and its adsorption capacity for basic dyes. Ind. Eng. Chem. Res., 52: 16902-16910.
  20. Afkhami, A. and R. Norooz-Asl. 2009. Removal, preconcentration and determination of Mo(VI) from water and wastewater samples using maghemite nanoparticles. Colloids Surf A: Physico-chem. Eng. Asp., 346(1-3): 52-57.
  21. Gupta, V. K., S. Agarwal and T.A Saleh. 2011. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res., 45(6):2207-2212.
  22. Ali, I. 2012. New generation adsorbents for water treatment. Chem. Rev., 112(10): 5073–5091.
  23. Schwarz, J.A., C.T. Driscoll and A.K. Bharot. 1984. The zero point of charge of silica-alumina oxide suspensions. J. Colloid Interface Sci., 97(1): 55-61.
  24. Chang, Q., W. Lin and W.C. Ying. 2010. Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water. J. Hazard. Mater.,184(1-3): 515-522.
  25. Palit, D. and S.P. Moulik. 2000. Adsorption of methylene blue on cellulose from its own solution and its mixture with methyl orange. Indian J. Chem., 39 A: 611-617.
  26. Adamson, A.W. 1990. Physical chemistry of surfaces (5th edn). John Wiely and Sons Inc., New york, USA.
  27. Potgiefer, J.H. 1991. Adsorption of methylene blue on activated carbon: An experiment illustrating both the Langmuir and Freundlich isotherms. J. Chem. Educ., 68(4): 349.
  28. Thomas, H.C. 1948. Chromatography: a problem in kinetics. Ann. New York Acad. Sci., 49: 161-182.
  29. Reynolds, T.D and P.A. Richards. 1996. Unit operations and process in environmental engineering. PWS, Boston, USA.
  30. Kumar, N., et al. 2016. Efficient removal of Rhodamine 6G dye from aqueous solution using nickel sulphide incorporated polyacrylamide grafted gum karaya bionanocomposite hydrogel. R. Soc. Chem., 6(26): 21929-21939.
  31. Postai, D.L., C.A. Demarchi and Z. Fetal. 2016. Adsorption of Rhodamine B and methylene blue dyes using waste of seeds of Aleurites moluccana, a low cost adsorbent. Alex. Eng. J., 55:1713-1723.
  32. Zaleschi, L., et al. 2014. Removal of Rhodamine 6G from aqueous effluents by electrocoagulation in a batch reactor: Assessment of operational parameters and process mechanism. Water Air Soil Poll., 225:2101.
  33. Rehman, M.Z. 2020. Concurrent adsorption of cationic and anionic dyes from environmental water on amine functionalized carbon. Water Sci. Tech., 81(3): 466-478.
  34. DaSilva, A.M.B., et al. 2019. Removal of Rhodamine 6G from synthetic effluents using Clitoria fairchil-diana pods as low-cost biosorbent. Env. Sci. Poll. Res., 27:2868-2880. doi:10.1007/s11356-019-07114-6.
  35. Mckay, G., M.S. Otterburn and A.G. Sweeney. 1981. Surface mass transfer process during colour removal from effluent using silica. Water Res., 15(3): 327-331.
  36. Sreelatha, G. and P. Padmaja. 2008. Study of removal of cationic dyes using palm shell powder as adsorbent. J. Env. Prot. Sci., 2: 63-71.
  37. Gollakota, A.R.K., et al. 2020. Synthesis of novel ZSM-22 zeolite from Taiwanese coal flyash for the selective separation of Rhodamine 6G. J. Mater. Res. Tech., 9(6):15381-15393.
  38. Gautam, D., S. Lal and S. Hooda. 2020. Adsorption of Rhodamine 6G dye on binary system of nanoarchitectonics composite magnetic graphene oxide material. J. Nanosci. Nanotech., 20: 2939–2945.
  39. Suwunwong, T., et al. 2020. Enhancement the Rhodamine 6G adsorption property on Fe3O4composited biochar derived from rice husk. Mater. Res. Express. 7: 025511.
  40. Leong, A.J., et al. 2019. Removal of Rhodamine 6G and Crystal Violet dyes from water sample using cellulose acetate-(3-aminopropyl) trietho-xysilane sorbent. AIP Conference Proceedings. 2155(1).
  41. Phoemphoonthanyakit, S., et al. 2019. Effect of adsorption characteristics of Rhodamine 6G dye solution in Fe3O4 magnetic nanoparticles on fluorescence quantum yield. J. Spectrosc. DOI: 10.1155/2019/2853989.
  42. Shen, K. and M.A. Gondal. 2017. Removal of hazardous Rhodamine dye from water by adsorption onto exhausted coffee ground. J. Saudi Chem. Soc., 21: S120-S127.
  43. Alizadeh, A., et al. 2016. Application of cellulosic biomass for removal of cationic dye Rhodamine 6G from aqueous solutions. Int. J. Waste Resour., 6(4). DOI: 0.4172/2252-5211.1000256.
  44. Ding, L., et al. 2014. Adsorption of Rhodamine-B from aqueous solution using treated rice husk-based activated carbon. Colloids Surf. A : Physico-chem. Eng. Asp., 446: 1-7.