Heavy Metal Bioaccumulation and Air Pollution Tolerance Index of Selected Plant Species from Urban Area

IJEP 42(3): 259-272 : Vol. 42 Issue. 3 (March 2022)

Anjana Devkota* and Sarita Sapkota

Tribhuvan University, Central Department of Botany, Kirtipur – 44618, Kathmandu, Nepal

Abstract

The study was conducted to evaluate metal accumulation index and air pollution tolerance index of five selected plant species, namely Buddleja asiatca, Ficus religiosa, Leucoseptrum canum, Nyctanthes arbor-tristis and Tecoma stans along roadside of Lalitpur district. The air pollution tolerance index (APTI) was calculated based on various biochemical parameters, namely total chlorophyll, leaf extract pH, ascorbic acid and relative water content. Total chlorophyll contents and leaf extract pH of leaves were affected adversely by dust pollution. These parameters of leaves seemed to decreased with increasing pollution levels. Ascorbic acid and relative water content of leaf samples were increased with increasing pollution levels to withstand stress caused by pollution. The plants varied in their metal accumulation and air pollution tolerance. Metal accumulation in plant species was higher in heavily polluted sites. According to average metal accumulation indices (MAIs), the studied plants was found in descending order Ficus religiosa (12.98) >Nyctanthes arbor-tristis (5.84) >Lecosceptrum canum (5.10) >T. stans (4.0) >B. asiatica (3.95) in leaf samples; while in bark samples MAI values were in order Ficus religiosa (38.69)>Lecosceptrum canum (16.18)>Buddleja asiatica (14.16)>Tecoma stans (7.45)>Nycatanthes arbor-tristis (6.33). The mean values of APTI within the city of Lalitpur district were as follows: B. asiatica (6.24); L. canum (8.32); N. arbor-tristis (8.46); T. stans (8.87) and F. religiosa (10.44). The study indicated relatively high metal accumulation and tolerance of Ficus religiosa emerged as the tolerant species with high MAI and APTI value. Hence, Ficus religiosa can be suggested for plantations along the roadside of urban areas for green belt development.

Keywords

Ascorbic acid, Chlorophyll content, Metal accumulation index, Relative water content

References

  1. Das, S. and P. Prasad. 2010. Seasonal variation in air pollution tolerance indices and selection of plant species for industrial areas of Rourkela. Indian J. Env. Prot., 30(12) :978–988.
  2. Olukanni, D.O. and S.A. Adebiyi. 2012. Assessment of vehicular pollution of roadside soils in Ota Metropolis, Ogun state, Nigeria. Int. J. Civil Env. Eng., 12:40–46
  3. Bakand S., et al. 2005. Toxicity assessment of industrial chemicals and airborne contaminants: Transition from in-vivo to in-vitro test methods: A review. Inhal. Toxicol.,17 (13): 775-787.
  4. Hayes A., S. Bakand and C. Winder .2007. Novel in-vitro exposure techniques for toxicity testing and biomonitoring of airborne contaminants. In Drug testing in vitro-Achievements and trends in cell culture techniques. Wiley-VCH, Berlin. pp 103-124.
  5. Abdelaziz, L.A.K. and A.A.K. Omar. 2007. Atmospheric heavy metal pollution in Aqaba city, Jordan, using Phoenix dactylifera L. leaves. Atmos. Env., 41(39):8891-8897. DOI: 10.1016/j.atmo-senv.2007.08.028.
  6. Gopalani, M., et al. 2007. Heavy metal content of potato chips and biscuits from Nagpur city, India. Bull. Env. Contam. Toxicol., 79: 84–387.
  7. Liu, Y.J., Y.G. Zhu and H. Ding. 2007. Lead and cadmium in leaves of deciduous trees in Beijing, China: Development of metal accumulation. Env. Poll., 145:387-390.
  8. Dalvi, A. A. and S. A. Bhalerao. 2013. Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann. Plant Sci., 2(9) : 362-368.
  9. Anyanwu, E.C. and I. Kanu. 2006. The role of urban forest in the protection of human environmental health in geographically-prone unpredictable hostile weather conditions. Int. J. Env. Sci. Tech., 3: 197–201.
  10. Holt, E.A. and S.W. Miller. 2011. Bioindicators: using organisms to measure environmental impacts. Nat. Educ. Knowl., 2(2) :1–10.
  11. Esfahani, A., et al. 2013. Assessment of air pollution tolerance index of higher plants suitable for green belt development in east of Esfahan city, Iran. J. Ornam. Hortic., 3(2) : 87-94.
  12. Davision, A.W. and J. Blakemore. 1976. Factors determining flouride accumulation in Forage. In Effects of air pollutions on plants. Ed T.A. Mansfield Cambridge University Press, UK. pp 17-30.
  13. Shi, J., et al. 2017. Quantifying the particulate matter accumulation on leaf surfaces of urban plants in Beijing, China. Atmos. Poll. Res., 8: 836-842. doi:10.1016/j.apr.2017.01.011.
  14. Pandey, A.K., et al. 2015. Air pollution tolerance index and anticipated performance index of some plant species for development of urban forest. Urban Urban Green. 14:866–871.
  15. Kuddus, M., R. Kumari and P. W. Ramteke. 2011. Studies on air pollution tolerance of selected plants in Allahabad city, India. J. Env. Manage., 2(3) :42-46.
  16. Rai, P. K. and L. L. S. Panda. 2014. Leaf dust deposition and its impact on biochemical aspect of some roadside plants of Aizawl, Mizoram, northeast India. Int. Res. J. Env., 3(11):14-19.
  17. Prajapati, S.K. and B.D. Tripathi. 2008. Anticipated performance index of some tree species considered for green belt development in and around an urban area: a case study of Varanasi city, India. J. Env. Manage., 88:1343–1349.
  18. Nayak, R., D. Biswal and R. Sett. 2013. Biochemical changes in some deciduous tree species around Talcher thermal power station, Odisha, India. J. Env. Biol., 34:521–528.
  19. Sanghi, S.B., C. Sharma and S.K. Sanghi. 2015. Comparison of APTI values of some medicinal plants of industrial areas and Ratapani wildlife sanctuary in Raisen district of Madhya Pradesh. Int. J. Pharma. Life Sci., 6(1):4157–4160.
  20. FAO. 2008. Fertilizer and plant nutrition. bulletin no. 19. Rome.
  21. Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol., 24:1-15.
  22. Bajaj, K.L. and G. Kaur.1981. Spectrophotometric determination of ascorbic acid in vegetation and fruits. Analyst., 106:117-120.
  23. Apriyantono, A., et al. 1989Analysis Pangan. IPB Press, Bogor.
  24. Barr, H.D. and P.E. Weatherley. 1962. A reexamination of the relative turgidity technique for estimating water deficit in leaves. Australian J.Biol. Sci.,15:413-428.
  25. Singh, S.K. and D.N. Rao. 1983. Evaluation of plants for their tolerance to air pollution. Symposium on air pollution control. Delhi. Proceedings, pp 218-224.
  26. Hu, Y., et al. 2014. Bioaccumulation of heavy metals in plant leaves from Yan’an city of the Loess Plateau, China. Ecotoxicol. Env. Saf., 110: 82-88.
  27. Amusan, A.A., D.V. Ige and R. Olawale. 2005. Characteristics of soil and crops’ uptake of metals in municipal waste dump sites in Nigeria. J. Human Ecol., 17(3): 167-171.
  28. Srinivas, N. S., R. K. Ramakrishna and K. Suresh. 2009. Trace metal accumulation in vegetables grown in industrial and semi-urban areas. A case study. Appl. Ecol. Env. Res., 7(2) :131-139.
  29. Conti, M.E., et al. 2008. Lichen Usnea barbata as a biomonitor of airborne elements deposition in the Province of Tierra del Fuego (Southern Patagonia, Argentina). Ecotoxicol. Env. Saf., 72:1082-1089.
  30. Mansour, R.S. 2014. The pollution of tree leaves with heavy metal in Syria. Int. J. Chem.Tech., 6 (4): 2283-2290.
  31. Allen, S.E., et al. 1974. Chemical analysis of ecological materials. Blackwell Scientific Publications, Oxford, UK.
  32. Yilmaz, S. and M. Zengin. 2004. Monitoring environmental pollution in Erzurum by chemical analysis of Scots pine (Pinus sylvestris L.) needles. Env. Int., 29(8):1041-1047.
  33. Lagerwerff, J.V. and A.W. Specht. 1970. Contamination of roadside soil and vegetation with cadmium, nickel, lead and zinc. Env. Sci. Tech., 4:583-586.
  34. Aksoy, A. and U. Sahln.1999. Elaeagnus angu-stifolia L. as a biomonitor of heavy metal pollution. TurkishJ. Bot.,23: 83-87.
  35. Ara, F., M.Z. Iqbal and M.S. Qureshi. 1996. Determination of heavy metals contamination of trees and soils due to vehicular emission in Karachi city. Karachi University J. Sci., 24: 80-84.
  36. Scheffer, F. and P. Schachtschabel.1989. Textbook of soil science (12th edn). FEV Stuttgart.
  37. Gune, A., M. Alpaslan and A. Inal. 2004. Plant growth and fertilizer. Agriculture Pub. No: 1539. Ankara University, Ankara, Turkey.
  38. Viard, B., et al. 2004. Integrated assessment of heavy metals (lead, zinc and cadmium) highway pollution: Accumulation in soil, graminaceae and land snails. Chemosphere. 55:1349-1359.
  39. Aksoy, A., F. Demirezen and A. Duman. 2005. Bioaccumulation, detection and analysis of heavy metal pollution in Sultan Marsh and its environment. Water Air Soil Poll., 164 (14) : 241- 255.
  40. Kabata-Pendias, A. and H. Pendias. 1999. Biog-eochemistry of trace element. PWN, Warsaw, Poland.
  41. Gunes, A. and A. M. Alpaslan. 2004. Plant growth and fertilizer. Agriculture Publications No. 1539. Ankara university, Ankara.
  42. Brown, P. H. 2006. Nickel. In Handbook of plant nutrition. ed A. V. Barker and D. J. Pilbeam. CRC Press Taylor and Francis Group, Boca Raton, FL. pp 395-410.
  43. Al-Shayeb, S. M. and M. R. D. Seaward. 2001. Heavy metal content of roadside soils along ring road in Riyadh (Saudi Arabia). Asian J. Chem., 13 (2) : 407-423.
  44. Parekh, P.P., et al. 2002. Lead content of petrol and diesel and its assessment in an urban environment. Env. Monit. Assess., 74:255-262.
  45. Kazmi, S.M.A., S.S. Shaukat and D. Khan. 2002. Some physical and biochemical effects of automobile exhaust pollution on common roadside plants in Karachi, Pakistan. HamdardMed.,XVL:38-43.
  46. Aksoy, A., U. Sahln and F. Duman. 2000. Robinia psueo-acacia L. as a possible biomonitor of heavy metal pollution in Kayseri. TurkishJ. Bot.,24 : 279-284.
  47. Koepp, D. E. 1981. Lead: understanding the minimal toxicity of lead in plants. In Effect of heavy metal pollution on plants. Effects of trace metals on plant function. Ed N.W. Lepp. Applied Science Publishers, London. pp 55-76.
  48. Gromow, S. and E. Emelina. 1994. Lead emission evaluation over the European part of the former Soviet Union. Sci. Total Env., 158: 135-137.
  49. Liu, Y.J. and H. Ding. 2008. Variation in air pollution tolerance index of plants near a steel factory: Implication for landscape-plant species selection for industrial areas. WSEASTrans. Env. Develop., 4:24-32.
  50. Allen, S.E. 1989. Chemical analysis of ecological materials (2nd edn). Blackwell Scientific Publications, Oxford, London.
  51. Dogan, Y., et al. 2014. Heavy metal accumulation in the bark and leaves of Juglans regiaplanted in Artvin city, Turkey. Biotech. Biotech. Equip., 28(4): 643–649.
  52. Reimann, C., et al. 2015. Biogeochemical plant-soil interaction: variable element composition in leaves of four plant species collected along a south-north transect at southern tip of Norway. Sci. Total Env., 506: 480-495.
  53. Nadgorska-Socha, A., et al. 2017. Air pollution tolerance index and heavy metal bioaccumulation in selected plant species from urban biotopes. Chemosphere.183:471-482.
  54. Singare, P.U. and M. S. Talpade. 2013. Physiological responses of some plant species as a bioin-dicator of roadside automobile pollution stress using the air pollution tolerance index approach. Int. JPlantRes., 3(2) : 9-16.
  55. Prajapati, K.S. 2012. Biomonitoring and speciation of road dust for heavy metals using Calotropis procera and Dalbergia sissooEnv. Skep. Crit.,1(4): 61-64.
  56. Manjunath, B.T. and J. Reddy. 2019. Comparative evaluation of air pollution tolerance of plants from polluted and non-polluted regions of Bengaluru. JAppl. Biol. Biotech., 7(3):63-68.
  57. Leghari, S.K. and M.A. Zaidi. 2013. Effect of air pollution on the leaf morphology of common plant species of Quetta city, Pakistan. Pakistan. J. Bot., 45:447-454. DOI: 10.7324/JABB.2019.70312.
  58. Tripathi, A.K. and M. Gautam. 2007. Biochemical parameters of plants as indicators of air pollution. J. Env. Biol., 28:127–132.
  59. Giri, S., et al. 2013. Effect of air pollution on chlorophyll content of leaves. Curr. Agric. Res. J., 1:93–98.
  60. Scholz, F. and S. Reck. 1977. Effects of acids on forest trees as measured by titration in-vitro inheritance of buffering capacity in Picea Abies. Water Air Soil Poll., 8:41-45.
  61. Singh, S.N. and A. Verma. 2007. Phytoremediation of air pollutants: A review. In Environmental bioremediation technology. Ed S.N. Singh and R.D. Tripathi. Springer, Berlin Heidelberg. pp 293- 314.
  62. Kumar, M. and N. Nandini. 2013. Identification and evaluation of air pollution tolerance index of selected avenue tree species of Urban Bangalore, India. Int. J. Emerg. Tech. ComputAppl. Sci., 13: 388-390 .
  63. Dedio, W. 1975. Water relations in wheat leaves as screening test for drought resistance. Canadian J.Plant Sci., 55(2) : 369-378.
  64. Innes, J.L. and A.H. Haron. 2000. Air pollution and the forests of developing and rapidly industrializing regions. Report No. 4. IUFRO Task Force on Environmental Change, CABI, Wallingford.
  65. Cheng, F.Y., et al. 2007. Leaf extracellular ascorbic in relation to O3tolerance of two soybean cultivars. Env. Poll.150: 355-362.
  66. Klumpp, G., et al. 2000. Response of stress indicators and growth parameters of Tibouchina pulchra Cogn. exposed to air and soil pollution near the industrial complex of Cubatao, Brazil. Sci. Total Env., 246 : 79-91.
  67. Bhattacharya, T., et al. 2012. Heavy metal concentrations in street and leaf deposited dust in Anand city, India. RJCS. 1(5) : 61-66.
  68. Yannawar, V. B. and A.B. Bhosle. 2013. Air pollution tolerance of various species around Nanded city, Maharastra, India. J. App. Phytorem. Env. Sani., 3(1) :23-28.
  69. Jyothi, J. S. and D. S. Jaya. 2010. Evaluation of air pollution tolerance index of selected plant species along roadsides in Thiruvanthapuram, Kerala. J. Env. Biol., 31:379-386.
  70. Lakshmi, P. S., K. L. Sravanti and N. Srinivas. 2009. Air pollution tolerance index of various plant species growing in industrial areas. The Ecoscan., 2: 203-206.
  71. Agbaire, P.O. and E. Esiefarienrhe. 2009. Air pollution tolerance indices (APTI) of some plants around Otorogun gas plant in Delta state, Nigeria. JASEM. 13: 11-14.
  72. Randhi, U.D. and M.A. Reddy. 2012. Evaluation of tolerant plant species in urban environment: A case study from Hyderabad, India. Univers. J. Env. Res. Tech., 2: 300- 304.
  73. Ninave, S.Y., et al. 2001. Foliar biochemical fea-tures of plants as indicators of air pollution. Bull. Env. Contam. Toxicol., 67:133–140.