Synthesis and Characterization of Nanostructured ZnO by Simple Sol-Gel Method and Investigation of its Adsorptive Capacity

IJEP 42(6): 676-684 : Vol. 42 Issue. 6 (June 2022)

Bahga Saleh1, Samreen Fatema1, Mazhar Farooqui1 and Shaikh Yusuf2*

1. Maulana Azad College of Arts, Science and Commerce, Aurangabad – 431 001, Maharashtra, India
2. Shivaji College, Kannad – 431 401, Maharashtra, India

Abstract

Indiscriminate use and inertness of synthetic polymers leading to increased water and land pollution are of great concern. Many attempts have been made to control the problem by using both chemical and biological methods. Chemical methods resulted in an increase in pollution by releasing noxious gases in the atmosphere whereas biological methods have been 

Keywords

Sol-gel, Zinc oxide-nanoparticles, Adsorption, Crystal violet, Fourier transform infrared, Scanning electron micro-scopy-electron diffraction x-ray, X-ray diffraction

References

  1. Haritha, M., et al. 2011. Synthesis and characterization of zinc oxide NPs and its antimicrobial activity, against bacillus subtilis and escherichia coli. rasayan J. Chem., 4(1): 217-222.
  2. Brintha, S.R. and M. Ajitha. 2015. Synthesis and characterization of ZnO-NPs via aqueous solution sol-gel and hydrothermal methods. IOSR J. Appl. Chem., 8(11): 66-72.
  3. Moosavi, F., M. E. Bahrololoom and R. Kamjou. 2016. Effects of Cu doping on nano structure, morophology and photocatalytic activity of ZnO thin film synthesised by sol-gel method. Studia UBB Chemia. LXI(1):79-87.
  4. Ibrahim, N.B., S.M. AL-Shomar and S.H. Ahmad. 2013. Effect of annealing temperature on the structural and optical properties of nanocrystalline ZnO thin films prepared by sol-gel method. Sains Malaysiana. 42(12):1781–1786.
  5. Khodair, Z.T., et al. 2012. Synthesis and study of ZnO nanorods and Fe-doped ZnO nanoflowers by atmospheric pressure chemical vapour deposition (APCVD) technique. J. Electron Devices. 15: 1200-1208.
  6. Shanmugan, S., et al. 2014. Sol-gel derived Mg and Ag doped ZnO thin film on glass substrate: structural and surface analysis. J. Optoelectronics Biomedical Mater., 6(4): 119-129.
  7. Hasnidawani, J.N., et al. 2016. Synthesis of ZnO nanostructures using sol-gel method. Procedia Chem., 19: 211-216.
  8. Jurablu, S., et al. 2015. Sol-gel synthesis of zinc oxide (ZnO) nanoparticles: study of structural and optical properties. J. Sci. Islamic Republic of Iran. 26(3): 281-285.
  9. Kumar, D., et al. 2008. Synthesis of ZnO: Mn nanoparticles, nanobelts and nanorods. J. Ovonic Res., 4:101- 105.
  10. Sridevi, D. and K.V. Rajendran. 2009. Preparation of ZnO-nanoparticles and nanorods by using CTAB assisted hydrothermal method. J. Nanotech. Applications. 3:43-48.
  11. Nirmala, S., et al. 2016. Removal of malachite green from aqueous solutions by adsorption using low cost adsorbent andrographis paniculata leaves. Int. J. Sci. Res. Publications. 6(9): 689-693.
  12. Mayathevar, R. and X. Arulanandham. 2018. Adsorption of reactive magenta and meyhyl red from aqueous solution using activated carbons. Int. J. Current Res., 10(8): 72565-72574.
  13. Radwan, N.R.E., et al. 2016. Adsorption of Crystal Violet dye on modified bentonites. Asian J. Chem., 28(8): 1643-1647.
  14. Chowdhury, S. and T. K. Saha. 2016. Adsorption of reactive blue 4 (RB4) onto rice husk in aqueous solution. Int. J. Sci. Eng. Res., 7(3):2229-5518.
  15. Zelmanov, G. and R. Semiat. 2008. Iron (3) oxide-based nanoparticles as catalysts in advanced organic aque-ous oxidation. Water Res., 42(1-2): 492–498.
  16. Rad, M.S., et al. 2014. Removal, preconcentration and determination of methyl red in water samples using silica coated magnetic nanoparticles. J. Appl. Res. Water Wastewater. 1: 6-12.
  17. Zafar, M.N., et al. 2019. Effective adsorptive removal of azo dyes over spherical ZnO-nanoparticles. j. mater. Res. Tech., 8(1):713–725.
  18. Asl, M.N., et al. 2016. Adsorption of organic dyes using copper oxide nanoparticles: isotherm and kinetic studies. J. Desalination Water Treat., 57(52): 25278-25287.
  19. Anastopoulos, I., et al. 2018. Use of nanoparticles for dye adsorption: Review. J. Dispersion Sci. Tech., 39(6): 3836-3847.
  20. Hamidzadeh, S., et al. 2015. Removal of crystal violet from water by magnetically modified activated carbon and nanomagnetic iron oxide. J. Env. Health Sci. Eng., 13(8): 2-7.
  21. Sanchez, E. and T. lapez.1995. Effect of the preparation method on the bandgap of titania and platinum-titania sol-gel materials. Mater. Letters. 25: 271-275.
  22. Singh, P., et al. 2015. Synthesis of manganese oxide nanoparticles using similar process and different precursors–A comparative study. Nanotech R J., 8(3): 419-427.
  23. Luna, I.Z., et al. 2015. Preparation and characterization of copper oxide nanoparticles synthesized via chemical precipitation method. Open Access Library J., 2(3): 1-8.
  24. Thanoon, K. H., et al. 2017. Synthesis of copper oxide nanoparticles via sol-gel method. Int. J. Res. Eng. Innovation. 1(4): 43-45.
  25. Srivastava, S., et al. 2013. Synthesis and charac-terisation of copper oxide nanoparticles. IOSR J. Appl Phys., 5(4):61-65.
  26. Quadri, W.T., et al. 2017. Zinc oxide nanocom-posites of selected polymers: synthesis, characterization and corrosion inhibition studies on mild steel in HCl solution. ACS Omega. 2: 8421-8437.
  27. Kumar, H. and R. Rani. 2013. Structural and optical characterization of ZnO-nanoparticles synthesized by microemulsion route. Int. Lett. Chem. Phys. Astro., 2(14):26-36.
  28. Jirekar, D. B. and M. Farooqui. 2015. Adsorption of congo red dye from aqueous solution using eco- friendly low-cost material prepared from cicer arientinum. Arab J. Phys. Chem., 2(1):1-6.
  29. Pathania, D. and S. Sharma. 2017. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab J. Chem., 10:1445–1451.
  30. Veeravu, H. P., et al., 2019. A statistical investigation into ammonical nitrogen adsorption on chitosin bentonite nanocomposite films by response surface methodology. Indian J. Env. Prot., 39(12): 1106-1113.
  31. Hussain, S., et al. 2010. Adsorption studies of Fe (II) on low-cost biomaterial. Adv. Appl. Sci. Res., 1 (3): 147-152.