Assessment of Spatial and Temporal Trends of Diurnal Temperature Range for Vidisha District, Madhya Pradesh, India

IJEP 43(7): 599-611 : Vol. 43 Issue. 7 (July 2023)

Shohrat Ali1, Birendra Bharti1*, H.P. Singh1 and R.K. Jaiswal2

1. Central University of Jharkhand, Department of Civil Engineering, Ranchi, Jharkhand – 835 205, India
2. National Institute of Hydrology, WALMI Campus, Bhopal, Madhya Pradesh – 462 016, India


Diurnal temperature ranges (DTR) are a vital meteorological indicator of climate change. In this study, the temporal trend for duration of 38 years (1981-2018) for DTR was analyzed. The study area chosen was Vidisha district of Madhya Pradesh, India. To compute the DTR, daily maximum temperature (Tmax) and daily minimum temperature (Tmin) were used and to measure the relationship between rain and DTR: monthly, annual and seasonal data of rainfall was used. Mann-Kendall test and Sen’s slope method were used to identify statistically significant positive or negative trends in climate data. The annual average DTR of the Vidisha is 13.830C, with a maximum of 16.650C in pre-monsoon and a minimum of 9.010C in monsoon. In annual DTR a considerable negative shift of -0.230C/decade was seen over the Vidisha district. All four seasons show a negative shift in DTR, but the maximum decrement (-0.270C/decade) was observed during monsoon season. On an annual and seasonal basis, there is a significant negative correlation between DTR and rainfall, demonstrating that rainfall significantly affects DTR fluctuations in the Vidisha district. One of the causes of the decline in DTR in the Vidisha district could be a collateral increase in rainfall.


Trend analysis, Diurnal temperature ranges, Spearman’s correlation test, Climate change


  1. Easterling, D. R., et al. 2009. Maximum and minimum temperature trends for the globe. Sci., 277 (5324): 364-367. DOI: 10.1126/Sci..277.5324. 364.
  2. Englehart, P. J. and A. V. Douglas. 2005. Changing behaviour in the diurnal range of surface air temperatures over Mexico. Geophys. Res. Lett., 32:1-4. DOI: 10.1029/2004GL021139.
  3. Sun, D., R. T. Pinker and M. Kafatos. 2006. Diurnal temperature range over the United States: A satellite view. Geophys. Res. Lett., 33(3): 2-5. DOI: 10.1029/2005GL024780.
  4. You, Q., et al. 2016. Observed trend of diurnal temperature range in the Tibetan plateau in recent decades. Int. J. Climatol., 36(6):2633-2643. DOI: 10.1002/joc. 4517.
  5. Vose, R. S., D. R. Easterling and B. Gleason. 2005. Maximum and minimum temperature trends for the globe: An update through 2004. Geophys. Res. Lett., 32(23): 1-5. DOI: 10.1029/2005GL024379.
  6. Karl, T.R., et al. 1991. Global warming: Evidence for asymmetric diurnal temperature change. Geophys. Res. Lett., 18(12):2253-2256. doi: 10. 1029/91GL02900.
  7. Kukla, G. and T. R. Karl. 1993. Nighttime warming and the greenhouse effect. Env. Sci. Tech., 27(8): 1468–1474.
  8. Makowski, K., M. Wild and A. Ohmura. 2008. Diurnal temperature range over Europe between 1950 and 2005. Atmos. Chem. Phys., 8:6483-6498.
  9. Shen, X., et al. 2014. Spatio-temporal change of diurnal temperature range and its relationship with sunshine duration and precipitation in China. J. Geophys. Res. Atmos., 119(23):13163-13179. DOI: 10.1002/2014JD022326.
  10. Lauritsen, R. G. and J.C. Rogers. 2012. U.S. diurnal temperature range variability and regional causal mechanisms, 1901-2002. J. Climate. 25(20): 7216-7231. DOI: 10.1175/JCLI-D-11-00429.1.
  11. Roy, S. Sen and R.C. Balling. 2005. Analysis of trends in maximum and minimum temperature, diurnal temperature range and cloud cover over India. Geophys. Res. Lett., 32(12):1-4. DOI: 10.1029/2004GL022201.
  12. Jhajharia, D. and V.P. Singh. 2011. Trends in temperature, diurnal temperature range and sunshine duration in Northeast India. Int. J. Climatol., 31(9): 1353-1367. DOI: 10.1002/joc.2164.
  13. Bhutiyani, M. R., et al. 2007. Long-term trends in maximum , minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Climate Change. 85(1):159-177. DOI: 10.1007/s10584-006-9196-1.
  14. Dai, A. and R.T. Karl. 1999. Effects of clouds, soil moisture, precipitation and water vapour on diurnal temperature range. J. Climate. 12(8): 2451-2473.
  15. Kumar, K. R., K. Krishna and G.B. Pant. 1994. Diurnal asymmetry of surface temperature trends over India. Geophys. Res. Lett., 21(8): 677–680.
  16. Yadav, R. R., et al. 2004. Do the western Himalayas defy global warming? Geophys. Res. Lett., 31: 1–5. DOI: 10.1029/2004GL020201.
  17. Singh, P., et al. 2010. Basin-wide assessment of temperature trends in northwest and central India. Hydrol. Sci. J., 53(2):421-433. DOI: 10.1623/hysj.53.2.421.
  18. Rai, A., M.K. Joshi and A.C. Pandey. 2012. Variations in diurnal temperature range over India: Under global warming scenario. J. Geophys. Res. Atmos., 117(2): 1-12. DOI: 10.1029/2011JD0166 97.
  19. Vinnarasi, R., et al. 2017. Unravelling diurnal asymmetry of surface temperature in different climate zones. Sci. Reports. 7:7350. DOI: 10.1038/s4159 8-017-07627-5.
  20. Fowler, H.J. and D.R. Archer. 2006. Conflicting signals of climate change in the upper Indus basin. J. Climate. 19:4276-4293.
  21. Duhan, D., et al. 2013. Spatial and temporal variability in maximum, minimum and mean air temperatures at Madhya Pradesh in Central India. Comptes Rendus Geosci., 345(1): 3-21. DOI: 10. 1016/j.crte.2012.10.016.
  22. Kundu, S., et al. 2015. Analysis of spatial and temporal variation in rainfall trend of Madhya Pradesh, India (1901-2011). Env. Earth Sci., 73(12):8197-8216. DOI: 10.1007/s12665-014-3978-y.
  23. Desai, S., et al. 2019. Trend analysis of climatic variables in Betwa river basin. Indian J. Agric. Sci., 89(6):1033-1038.
  24. Devi, R. M., M. K. Patasaraiya and B. Sinha. 2020. Analyzing precipitation and temperature trends of Kanha and Satpura Tiger Reserve, Central India. Theoretical Appl. Climatol., 140(3-4):1435-1450.
  25. Suryavanshi, S. and A. Pandey. 2013. Long-term historic changes in climatic variables of Betwa. Theoretical Appl. Climatol., 117:403-418. DOI: 10.1007/s00704-013-1013-y.
  26. Kumar, S., et al. 2009. Streamflow trends in Indiana: Effects of long term persistence, precipitation and subsurface drains. J. Hydrol., 374(1-2): 171–183. DOI: 10.1016/j.jhydrol.2009.06.012.
  27. Nayak, T. R., M. K. Choudhary and V. K. Pandram. 2016. Modelling the crop water requirement using CROPWAT: A case study of Samrat Ashok Sagar (Halali) project command. India Water Week 2016 Conference. Ministry of Water Resources, Government of India, New Delhi.
  28. Xia, X. 2013. Variability and trend of diurnal temperature range in China and their relationship to total cloud cover and sunshine duration. Annales Geophys., 31(5): 795-804. DOI: 10.5194/angeo-31-795-2013.
  29. Peterson, T. C., et al. 1998. homogeneity adjustments of in-situ atmospheric climate data: a review. Int. J. Climatol., 1517(C): 1493–1517.
  30. Aguilar, E., et al. 2005. Changes in precipitation and temperature extremes in Central America and northern South America, 1961-2003. J. Geophys. Res. Atmos., 110(23):1-15. DOI: 10.1029/2005JD 006119.
  31. Tabari, H., B. S. Somee and M.R. Zadeh. 2011. Testing for long-term trends in climatic variables in Iran. Atmos. Res., 100(1):132-140. DOI: 10.10 16/j.atmosres.2011.01.005.
  32. You, Q., et al. 2008. Changes in daily climate extremes in the eastern and central Tibetan plateau during 1961-2005. J. Geophys. Res. Atmos., 113 (7):1–17. DOI: 10.1029/2007JD009389.
  33. Pandžic, K. and T. Likso. 2010. Homogeneity of average annual air temperature time series for Croatia. Int. J. Climatol., 30(8): 1215–1225. DOI: 10.1002/joc.1922.
  34. Taxak, A. K., A. R. Murumkar and D. S. Arya. 2014. Long-term spatial and temporal rainfall trends and homogeneity analysis in Wainganga basin, Central India. Weather Climate Extremes. 4: 50–61. DOI: 10.1016/j.wace.2014.04.005.
  35. Akinsanola, A. A. and K.O. Ogunjobi. 2017. Recent homogeneity analysis and long-term spatio-temporal rainfall trends in Nigeria. Theoretical Appl. Climatol., 128(1-2): 275-289. DOI: 10.1007/s00 704-015-1701-x.
  36. Kamruzzaman, M., et al. 2018. Spatio-temporal analysis of climatic variables in the western part of Bangladesh. Env. Develop. Sustain., 20(1): 89–108. DOI: 10.1007/s10668-016-9872-x.
  37. Levine, R. A. and D.S. Wilks. 2000. Statistical methods in the atmospheric science. J. American Statistical Assoc., 95(449): 344-345. DOI: 10.23 07/2669579.
  38. Alexandersson, H. 1986. A homogeneity test applied to precipitation data. J. Climatol., 6(6): 661–675. DOI: 10.1002/joc.3370060607.
  39. Pettitt, A. N. 1979. A non-parametric approach to the change-point problem. J. Royal Statistical Soc. Series C (Appl. Statistics). 28(2):126–135.
  40. Alexandersson, H. and A. Moberg. 1997. Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends. Int. J. Climatol., 17(1): 25–34.
  41. Wijngaard, J.B., A.M.G.K. Tank and G.P. Können. 2003. Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Climatol., 23(6): 679–692. DOI: 10.1002/joc.906.
  42. Hawkins, D. M. 1977. Testing a sequence of observations for a shift in location Douglas. J. American Statistical Assoc., 72(357): 180–186.
  43. Buishand, T. A. 1982. Some method for testing the homogeneity of rainfall records. J. Hydrol., 58:11-27.
  44. Kim, H. and D. Siegmund. 1989. The likelihood ratio test for a change-point in simple linear regression. Biometrika. 76(3): 409-423.
  45. Chen, J. and A.K. Gupta. 2007. On change point detection and estimation. Commun. Statistics Simul. Computation. 30:665-697.
  46. Radziejewski, M., A. Bardossy and Z.W. Kundze-wicz. 2009. Detection of change in river flow using phase randomization. Hydrol. Sci. J., 45(4): 547-558. DOI: 10.1080/02626660009492356.
  47. Lund, R. and J. Reeves. 2002. Detection of undocumented change points: A revision of the two-phase regression model. J. Climate. 15(17): 2547-2554.
  48. Rodionov, S. N. 2004. A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett., 31(3): 2–5. DOI: 10.1029/2004GL019448.
  49. Seidel, D. J. and J.R. Lanzante. 2004. An assessment of three alternatives to linear trends for characterizing global atmospheric temperature changes. J. Geophys. Res., 109: 1–10. DOI: 10.1029/2003 JD004414.
  50. Menne, M. J. and C.N. Williams Jr. 2005. Detection of undocumented change points using multiple test statistics and composite reference series. J. Climate. 18(20): 4271–4286.
  51. Bates, B.C., R.E. Chandler and A.W. Bowman. 2012. Trend estimation and change point detection in individual climatic series using flexible regression methods. J. Geophys. Res. Atmos., 117: 1-9. DOI: 10.1029/2011JD017077.
  52. Li, S. and R. Lund. 2011. Multiple change point detection via genetic algorithms. J. Climate. 25(2): 674–686. DOI: 10.1175/2011JCLI4055.1.
  53. Gallagher, C., R. Lund and M. Robbins. 2013. Change point detection in climate time series with long-term trends. J. Climate. 26(14):4994–5006. DOI: 10.1175/JCLI-D-12-00704.1.
  54. Kendall, M.G. 1948. Rank correlation methods. Griffin, London.
  55. Mann, H.B. 1945. Non-parametric test against trend. Econometrica. 13(3): 245-259.
  56. Shree, S., M. Kumar and A. Singh. 2021. Exploring spatial and temporal trends of diurnal temperature range in the region of the Subarnarekha river basin India. Spatial Inf. Res., 29(2):149-162. DOI: 10.10 07/s41324-020-00341-x.
  57. Panda, A. and N. Sahu. 2019. Trend analysis of seasonal rainfall and temperature pattern in Kalahandi, Bolangir and Koraput districts of Odisha, India. Atmos. Sci. Lett., 20(10):1-10. DOI: 10.10 02/asl.932.
  58. Tabari, H. and P.H. Talaee. 2011. Analysis of trends in temperature data in arid and semi-arid regions of Iran. Global Planetary Change. 79(1–2): 1–10. DOI: 10.1016/j.gloplacha.2011.07.008.
  59. Douglas, E.M., R.M. Vogel and C.N. Kroll. 2000. Trends in floods and low flows in the United States: Impact of spatial correlation. J. Hydrol., 240(1-2): 90-105. DOI: 10.1016/S0022-1694(00)00336-X.
  60. Yue, S., et al. 2002. The influence of autocorre-lation on the ability to detect trend in hydrological series. Hydrol. Processes. 16(9): 1807–1829. DOI: 10.1002/hyp.1095.
  61. Partal, T. and E. Kahya. 2006. Trend analysis in Turkish precipitation data. Hydrol. Processes. 20(9): 2011–2026. DOI: 10.1002/hyp.5993.
  62. Tirkey, N., et al. 2021. Analysis of precipitation variability over Satluj basin, Himachal Pradesh, India: 1901–2013. J. Water Climate Change. 12(1): 127–135. doi: 10.2166/wcc.2020.136.
  63. Byakatonda, J., et al. 2018. Analysis of rainfall and temperature time series to detect long-term climatic trends and variability over semi-arid Botswana. J. Earth System Sci., 127(2): 1–20. DOI: 10.1007/s12040-018-0926-3.
  64. Gocic, M. and S. Trajkovic. 2013. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Global Planetary Change. 100: 172–182. DOI: 10.1016/j.gloplacha.2012.10.014.
  65. Sanikhani, H., et al. 2018. Trend analysis of rainfall pattern over the Central India during 1901- 2010. Arabian J. Geosci., 11:437.
  66. Gajbhiye, S., et al. 2015. Trend analysis of rainfall time series for Sindh river basin in India. Theoretical Appl. Climatol., 125:593-608. DOI: 10.1007/s00704-015-1529-4.
  67. Jaiswal, R.K., A.K. Lohani and H.L. Tiwari. 2015. Statistical analysis for change detection and trend assessment in climatological parameters. Env. Processes. 2:729-749. DOI: 10.1007/s40710-015-0105-3.
  68. Theil, H. 1992. A rank-invariant method of linear and polynomial regression analysis. In Henri Theil’s contributions to economics and econometrics: Econometric theory and methodology. Ed Baldev Raj and Johan Koerts. pp 345-381. DOI: 10.1007/978-94-011-2546-8_20.
  69. Sen, P.K. 1968. Estimates of the regression coefficient based on Kendall’s Tau. J. American Statistical Assoc., 63(324): 1379–1389. DOI: 10.108 0/01621459.1968.10480934.
  70. Hirsch, R.M., J.R. Slack and R.A. Smith. 1982. Techniques of trend analysis for monthly water quality data. Water Resour. Res., 18(1): 107–121. DOI: 10.1029/WR018i001p00107.
  71. He, Y. and Y. Zhang. 2005. Climate change from 1960 to 2000 in the Lancang river valley, China. Mountain Res. Develop., 25(4):341-348. DOI: 10.1 659/0276-4741(2005)025[0341:CCFTIT]2.0. CO;2.
  72. Water, A., P.O. Box and S. Arabia. 2010. Temperature trends and distribution in the Arabian peninsula. American J. Env. Sci., 6(2): 191–203.
  73. Lettenmaier, D.P., E.F. Wood and J.R. Wallis. 1994. Hydro-climatological trends in the continental United States, 1948-88. J. Climate. 4(3): 57–71.
  74. Shahid, S., S.B. Harun and A. Katimon. 2012. Changes in diurnal temperature range in Bangladesh during the time period 1961-2008. Atmos. Res., 118: 260–270. DOI: 10.1016/j.atmosres.2012.07. 008.
  75. Qu, M., J. Wan and X. Hao. 2014. Analysis of diurnal air temperature range change in the continental United States. Weather Climate Extremes. 4:86–95. DOI: 10.1016/j.wace.2014.05.002.
  76. Kumar, V., S. K. Jain and Y. Singh. 2010. Analysis of long-term rainfall trends in India. Hydrol. Sci. J., 55(4): 484–496. DOI: 10.1080/02626667.2010. 481373.
  77. Stone, D.A. and A.J. Weaver. 2003. Factors contributing to diurnal temperature range trends in twentieth and twenty-first century simulations of the CCCma coupled model. Climate Dynamics. 20 (5):435-445. DOI: 10.1007/s00382-002-0288-y.
  78. Wild, M., A. Ohmura and K. Makowski. 2007. Impact of global dimming and brightening on global warming. Geophys. Res. Lett., 34(4):1-4. DOI: 10.1 029/2006GL028031.
  79. Zhou, L., et al. 2009. Spatial dependence of diurnal temperature range trends on precipitation from 1950 to 2004. Climate Dynamics. 32(2-3): 429-440. DOI: 10.1007/s00382-008-0387-5.
  80. Jaswal, A.K. 2010. Changes in total cloud cover over India based upon 1961-2007 surface observations. Mausam. 61(4):455–468.
  81. Lobell, D.B. 2007. Changes in diurnal temperature range and national cereal yields. Agric. Forest Meteorol., 145(3-4):229-238. DOI: 10.1016/j.agr formet.2007.05.002.
  82. Sheehy, J. E., P. L. Mitchell and A. B. Ferrer. 2006. Decline in rice grain yields with temperature: Models and correlations can give different estimates. Field Crops Res., 98(2-3): 151-156. DOI: 10.1016/j.fcr.2006.01.001.
  83. Rahman, M. A., et al. 2017. Impacts of temperature and rainfall variation on rice productivity in major ecosystems of Bangladesh. Agric. Food Security. 6(1): 1-11. DOI: 10.1186/s40066-017-00 89-5.
  84. Dube, R.K. and G.S.P. Rao. 2005. Extreme weather events over India in the last 100 years. J. Indian Geophys. Union. 9(3): 173–187. DOI: 10.16818/j.issn1001-5868.2017.05.004.