Variability of physico-Chemical Parameters of Agricultural Soils in Nuzvid Area, Andhra Pradesh

IJEP 44(1): 50-59 : Vol. 44 Issue. 1 (January 2024)

K. Venkatappala Naidu1, K. Suresh Kumar2 and Namuduri Srinivas2*

1. Rajiv Gandhi University of Knowledge Technologies, Department of Bio Sciences, Nuzividu – 521 202, Andhra Pradesh, India
2. GITAM (Deemed to be University), Department of Environmental Science, School of Science, Visakhapatnam – 530 045, Andhra Pradesh, India


Soil is a legitimate source with a high assortment of mineral components in the form of layers. In the present decade, agricultural and industrial activities play an important role in the variableness of the physico-chemical parameters of soils. To assess the variability of soil fertility parameters, samples were collected from various agricultural soils of the Nuzvid area, Eluru district of Andhra Pradesh and analyzed for multiple physico-chemical parameters. The results showed variability of physico-chemical parameters concerning pH, conductivity and other ions, which are calcium, magnesium, sodium and potassium, reported from moderate to high levels in agricultural soils. Based on the nutrition index, the majority of the soils of the study area reported low to medium nutrition index due to low nitrogen content. The present study results benefit cultivators as values in soil fertility and can be used for upcoming farming practices.


Physico-chemical parameters, Agricultural soils, Soil fertility, Variability


  1. Lopez, B.R. and M. Bacilio. 2020. Weathering and soil formation in hot, dry environments mediated by plant–microbe interactions. Biol. Fertility Soils. 56(4): 447-459.
  2. Borrelli, P., et al. 2020. Landuse and climate change impacts on global soil erosion by water (2015-2070). Proceedings National Academy Sci., 117 (36): 21994-22001.
  3. Gsänger, M., et al. 2016. Organic semiconductors based on dyes and colour pigments. Adv. Mater., 28(19): 3615-3645.
  4. FAO and ITPS. 2015. Status of the world’s soil resources (SWSR)– Technical summary. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy.
  5. Zornoza, R., et al. 2015. Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health. Soil. 1(1):173-185.
  6. Cheik, S. and P. Jouquet. 2020. Integrating local knowledge into soil science to improve soil fertility. Soil Use Manage., 36(4): 561-564.
  7. Iñigo, V. and M. S. Andrades. 2013. Spatial variability of cadmium and lead in natural soils of a humid mediterranean environment. La Rioja Spain. 64(4):594–604. 
  8. Pelosi, C. and J. Römbke. 2018. Enchytraeids as bioindicators of land use and management. Appl. soil ecol., 123: 775-779.
  9. De Vries, F.T. and M.D. Wallenstein. 2017. Below ground connections underlying above ground food production: a framework for optimising ecological connections in the rhizosphere. J. Ecol., 105(4): 913-920.
  10. Vanlauwe, B., et al. 2005. Long-term integrated soil fertility management in south-western Nigeria: Crop performance and impact on the soil fertility status. Plant Soil. 273: 337-354.
  11. Cerdà, A., et al. 2018. Policies can help to apply successful strategies to control soil and water losses. The case of chipped pruned branches (CPB) in Mediterranean citrus plantations. Land Use Policy. 75:734-745.
  12. Radojevic, M., V. Bashkin and V.N. Bashkin. 1999. Practical environmental analysis. Royal society of chemistry.
  13. Barbano, D. M., et al. 1990. Kjeldahl method for determination of total nitrogen content of milk: collaborative study. J. Assoc. Official Anal. Chemists. 73(6): 849-859.
  14. Paredes, C., D. Ahumada and J. Ágreda. 2022. Gravimetric complexometric titration method to determine mass fraction of ethylene diamine tetra-acetic acid disodium salt dihydrate in candidate-certified reference materials. MAPAN. 1-13.
  15. Rahbar, M., B. Paull and M. Macka. 2019. Instrument-free argentometric determination of chloride via trapezoidal distance-based microfluidic paper devices. Anal. chimica Acta. 1063:1-8.
  16. Singh, P., et al. 2019. A review on spectroscopic methods for determination of nitrite and nitrate in environmental samples. Talanta. 191: 364-381.
  17. Parker, F.W., et al. 1951. The broad interpretation and application of soil test information. Agronomy J., 43(3): 105-112.
  18. Ramamoorthy, B. and J.C. Bajaj. 1969. Soil fertility map of India. Indian Agricultural Research Institute.
  19. Gondal, A.H., et al. 2021. Influence of soil pH and microbes on mineral solubility and plant nutrition: A review. Int. J. Agric. Biol. Sci., 5(1): 71-81.
  20. Ferrarezi, R.S., et al. 2022. Substrate pH influences the nutrient absorption and rhizosphere microbiome of Huanglongbing-affected grapefruit plants. Frontiers Plant Sci., 13.
  21. Neina, D. 2019. The role of soil pH in plant nutrition and soil remediation. Appl. env. soil sci., 1-9.
  22. Petkar, S.D. 2022. physico-chemical analysis of paddy field soil samples from warora tahsil, district chandrapur, maharashtra, india. Int. J. Res. Biosci. Agric. TECH., X(III): 150-154.
  23. Zaman, M., et al. 2018. Introduction to soil salinity, sodicity and diagnostics techniques. In Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer Cham.
  24. Shi, Y.C., et al. 2009. Suitability of soil electrical conductivity as an indicator of soil nitrate status in relation to vegetable cultivation practices in the Yangtze river delta of China. Landbauforschung-vTI Agric. Forestry Res., 59: 151-158.
  25. Rezaee, A., O.B. Haddad and V.P. Singh. 2021. Water and society. InEconomical, political and social issues in water resources. Elsevier. pp 257-271.
  26. Boyd, C.E. 2020. Carbon dioxide, pH and alkalinity. InWater quality: An introduction. pp 177-203.
  27. Dhaliwal, S.S., et al. 2019. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Env. Sustain. Indicators. 1:100007.
  28. Vitousek, P.M., et al. 2022. A toy model analysis of causes of nitrogen limitation in terrestrial eco-systems. Biogeochem.,160(3): 381-394.
  29. LeBauer, D.S. and K.K. Treseder. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecol., 89(2): 371-379.
  30. Parton, W., et al. 2007. Global-scale similarities in nitrogen release patterns during long-term decom-position. sci., 315(5810): 361-364.
  31. Mooshammer, M., et al. 2014. Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling. Nature commun., 5(1): 3694.
  32. Zheng, H., et al. 2019. Cultivation of Chlorella vulgaris in manure-free piggery wastewater with high-strength ammonium for nutrients removal and biomass production: Effect of ammonium concentration, carbon/nitrogen ratio and pH. Bioresour. Tech., 273: 203-211.
  33. Zheng, S., et al. 2021. Stoichiometry of carbon, nitrogen and phosphorus in soil: Effects of agricultural landuse and climate at a continental scale. Soil Tillage Res., 209: 104903.
  34. Barre, P., et al. 2017. Geological control of soil organic carbon and nitrogen stocks at the landscape scale. Geoderma. 285: 50-56.
  35. Shivakumar, D., et al. 2012. Study of impacts of industries on soil characteristics of Mysore city India. Int. J. Geol. Earth Env. Sci., 2(2): 25-33.
  36. Wang, Q., et al. 2019. The significance of calcium in photosynthesis. Int. j. molecular sci., 20(6): 1353.
  37. Huber, D.M. and J.B. Jones. 2013. The role of magnesium in plant disease. Plant soil. 368: 73-85.
  38. Farhat, N., et al. 2016. Effects of magnesium deficiency on photosynthesis and carbohydrate parti-tioning. Acta physiol. plantarum. 38(6): 145.
  39. Munns, R., et al. 2020. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytologist. 225(3): 1091-1096.
  40. Johnson, R., et al. 2022. Potassium in plants: Growth regulation, signaling and environmental stress tolerance. Plant Physiol. Biochem., 172: 56-69.
  41. Franco-Navarro, J.D., et al. 2016. Chloride regulates leaf cell size and water relations in tobacco plants. J. Experimental Botany. 67(3): 873-891.
  42. Chakraborty, K., et al. 2022. Interplay between sodium and chloride decides the plant’s fate under salt and drought stress conditions. InPlant nutrition and food security in the era of climate change. Academic Press. pp 271-314.
  43. Choudhury, D., T. Thomas and T. Kumar. 2021. Fertility status and evaluation of nutrient index
    using available nitrogen, phosphorous and potassium of soils of Deomali hill-range valley zone, Odisha. Pharma Innov. J., 10(7): 121-126.
  44. Ravikumar, P. 2013. Evaluation of nutrient index using organic carbon, available P and available K concentrations as a measure of soil fertility in Varahi river basin, India. Proceedings Int. Academy Ecol. Env. Sci., 3(4): 330.
  45. Kumar, P., et al. 2013. Soil fertility status in some soils of Muzaffarnagar district of Uttar Pradesh, India, alongwith Ganga canal command area. African J. Agric. Res., 8(14): 1209-1217.
  46. Bhandari, N.S. and K. Nayal. 2008. Correlation study on physico-chemical parameters and quality assessment of Kosi river water, Uttarakhand. J. Chem., 5(2): 342-346.