Polarimetric Analysis of Glacier Surface Features using RADARSAT-2 and Sentinel-2 Data in Part of Chandra Basin, Northwest India

IJEP 44(5): 396-404 : Vol. 44 Issue. 5 (May 2024)

Parmod Kumar1, Swati Sharma1*, I.M. Bahuguna2, Sushil Kumar Singh2 and Sanjay Deswal3

1. Amity University (AIGIRS), Noida – 201313, Uttar Pradesh, India
2. Space Applications Centre (ISRO), Ahmedabad – 380 015, Gujarat, India
3. Government College, Chharra – 124 504, Haryana, India


Snow and glaciers are essential components of the Earth’s system. The Himalayan region possesses more than 50% of the ice outside the polar region. The melt water from snow and glaciers of the Hindu-Kush-Himalaya (HKH) region feeds about the 10 most prominent rivers in Asia and supports a large population living in downstream areas. It is also known as the water tower of Asia as it contains a large amount of water from perennial snow and ice at the highest elevation. Mountain glaciers have long served as natural laboratories for studying glacier processes. They are also essential elements of many landscapes; they release water, scour bedrock, cool the weather in summer and advance down valleys or retreat into high basins. They also preserve an extraordinary record of past changes in Earth’s climate and atmospheric composition. This study attempts to understand the interaction of polarimetric data of active synthetic aperture radar (SAR) with glacier features. SAR data have unique capabilities of penetration through clouds and fresh snow. We analyzed the polarimetric signature using RADARSAT-2 quad-pol (HH, HV, VH, VV) data for February 2011 and September 2011. The scattering mechanism of different glaciated features was analyzed using H/A/alpha decomposition and complemented with Sentinel 2 data for February 2021. This study shows the potential of SAR for extracting various glacier features and utility for the Himalayan cryosphere.


Synthetic aperture radar, Quad-pol, Radarsat-2, Sentinel-2, H/A/alpha decomposition, Polarimetry, Glacier


  1. Kunzi, K.F., S. Patil and H. Rott. 1982. Snow-cover parameters retrieved from Nimbus-7 scanning multichannel microwave radiometer (SMMR) Data. IEEE Trans. Geosci. Remote Sensing. GE-20(4): 452–467. DOI: 10.1109/TGRS.1982.350411.
  2. Richard, L.A. and B. Eric. 2008 . Snow and climate. Cambridge University Press.
  3. Paterson, W.S.B. 1994. The physics of glaciers (3rd edn). Butterworth-Heinemann, MA, USA.
  4. Shi, J. and J. Dozier. 1993. Measurements of snow- and glacier-covered areas with single-polarization SAR. Annals of Glaciol., 17: 72–76. DOI: 10.3189/s0260305500012635.
  5. Nagler, T. and H. Rott. 1993. Capabilities of ERS-1 SAR for snow and glacier monitoring in Alpine areas. Second ERS-1 Symposium- Space at the service of our environment (1993ESA SP-361). Hamburg, Germany. Proceedings, pp 965-970.
  6. Adam, S., A. Pietroniro and M.M. Brugman. 1997. Glacier snow line mapping using ERS-1 SAR imagery. Remote Sensing Env., 61(1): 46–54. DOI: 0.1 016/S0034-4257(96)00239-8.
  7. Forster, R. R., B. L. Isacks and S.B. Das. 1996. Shuttle imaging radar (SIR-C/X-SAR) reveals near-surface properties of the South Patagonian icefield. J. Geophys. Res. Planets. 101(E10): 23169–23180. DOI: 10.1029/96JE01950.
  8. Shi, J. and J. Dozier. 1997. Mapping seasonal snow with SIR-C/X-SAR in mountainous areas. Remote Sensing Env., 59(2): 294–307. DOI: 10.1016/S00 34-4257(96)00146-0.
  9. Rott, H. and T. Nagler. 1995. Monitoring temporal dynamics of snowmelt with ERS-1 SAR. Quantitative Remote Sensing Sci. Applications. 3: 1747–1749. DOI: 10.1109/IGARSS.1995.524014.
  10. Shi, J., et al. 1997. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data. IEEE Trans. Geosci. Remote Sensing. 35(5): 1254–1266. DOI: 10.1109/36.628792.
  11. Baghdadi, N., C.E. Livingstone and M. Bernier. 1998. Airborne C-band SAR measurements of wet snow-covered areas. IEEE Trans. Geosci. Remote Sensing. 36(6): 1977–1981. DOI: 10.1109/36.729371.
  12. Strozzi, T., U. Wegmuller and C. Matzler. 1999. Mapping wet snowcovers with SAR interferometry. Int. J. Remote Sensing. 20(12): 2395–2403. DOI: 10.1080/014311699212083.
  13. Storvold, R., et al. 2006. Sar remote sensing of snow parameters in Norwegian areas- Current status and future perspective. J. Electromagnetic Waves Applications. 20(13): 1751–1759. DOI: 10.1163/156939306779292192.
  14. Longepe, N., et al. 2009. Snowpack characterization in mountainous regions using C-band SAR data and a meteorological model. IEEE Trans. Geosci. Remote Sensing. 47(2): 406–418. DOI: 10.1109/TGRS.2008.2006048.
  15. Besic, N., et al. 2012. Stochastically based wet snow mapping with SAR data. 2012 IEEE International Geoscience and Remote sensing symposium. Proceedings, pp 4859–4862. DOI: 10.1109/IGARSS.2012.6352524.
  16. Fahnestock, M., et al. 1993. Greenland ice sheet surface properties and ice dynamics from ERS-1 SAR imagery. Sci., 262(5139): 1530–1534. DOI: 10.1126/science.262.5139.1530.
  17. Rees, W. G., J.A. Dowdeswell and A.D. Diament. 1995. Analysis of ERS-1 synthetic aperture radar data from Nordaustlandet, Svalbard. Int. J. Remote Sensing. 16(5): 905–924. DOI: 10.1080/01431 169508954451.
  18. Friedman, K. S., et al. 1999. Routine monitoring of changes in the Columbia glacier, Alaska, with synthetic aperture radar. Remote Sensing Env., 70(3): 257-264. DOI: 10.1016/S0034-4257(99)00042-5.
  19. Braun, A. 2021. Retrieval of digital elevation models from Sentinel-1 radar data- Open applications, techniques and limitations. Open Geosci., 13(1): 532–569. DOI: 10.1515/geo-2020-0246
  20. König, M., J.G. Winther and E. Isaksson. 2001. Measuring snow and glacier ice properties from satellite. Reviews Geophys., 39(1): 1–27. DOI: 10. 1029/1999RG000076.
  21. Singh, G., et al. 2008. The H/A/alpha polarimetric decomposition theorem and complex Wishart distribution for snow cover monitoring. IEEE International Geoscience Remote Sensing Symposium (IGARSS 2008). Proceedings, 4(1): 1081-1084. DOI: 10.1109/IGARSS.20 08.4779914.
  22. Singh, G., et al. 2010. Identification of snow using sar polarimetry techniques. Int. Arch. Photogrammetry Remote Sensing Spatial Inf. Sci., XXXVIII: 146-149.
  23. Pottier, E. and S.R. Cloude. 1997. Application of the H/A/alpha polarimetric decomposition theorem for land classification. SPIE Conference. Proceedings, 3120: 132–143. DOI: 10.1117/12.2789