Integrated Structural Mapping and Geological Analysis of Megado, Southern Ethiopia using Remote Sensing, Gravity and Magnetic Methods for Groundwater Prospecting

IJEP 45(10): 871-881 : Vol. 45 Issue. 10 (October 2025)

Bereket Gebresilassie1, Yeman Gebru1, Shimeles Fisseha2 and N. Rao Cheepurupalli3*

1. Aksum University, Department of Geology, Faculty of Mines, Shire 314, Tigray-Ethiopia
2. Addis Ababa University, Applied Geophysics Unit, Institute of Geophysics, Space Science and Astronomy, Addis Ababa, Ethiopia
3. Aksum University, Department of Mineral Processing and Metallurgical Engineering, Faculty of Mines, Shire 314, Tigray-Ethiopia

Abstract

The Megado area is characterized by hard rock terrain with a Precambrian crystalline basement or suites of intrusive rocks, overlain by tertiary volcanic products, such as basalt, scoria and eluvium deposits. An integrated approach combining remote sensing and potential field data was employed to investigate the geological structures and formations. Landsat 8 OLI imagery, alongwith gravity and magnetic surveys, were utilized. True colour and principal component density maps helped map lineaments from Landsat images. These maps revealed three lineaments trending northwest-southeast (NW-SE). Similarly, both qualitative and quantitative analyses of magnetic and gravity data confirmed the presence of these structural features. Interpretation of magnetic tilt derivative and analytic signal maps indicates that the structural features are oriented along northwest-southeast (NW-SE), northwest-southwest (NW-SW), north-northeast (NNE) and south-southeast (SSE). These various trends suggest that the area has undergone different tectonic cycles. Positive magnetic breaks or gradients reflect underlying basic intrusions and crystalline basement rocks, while negative anomalies are associated with deep structural features affected by weathering and dissolution. The structural features observed in magnetic data correspond with the residual gravity anomaly in the same orientations. Higher gravity anomalies in the residual gravity map indicate zones of higher-density basement rocks, whereas lower values represent thin crustal areas, such as fractures or faults with low density. These fractures are conducive to groundwater occurrence and circulation. Overall, the combined results from these methods indicate that the Megado area has experienced multiple tectonic episodes involving deep structural features.

Keywords

Lineaments, Hard-rock terrain, Gravity and magnetic methods, Semi-arid area, Groundwater

References

  1. Khodaei, K. and H.R. Nassery. 2011. Groundwater exploration using remote sensing and geographic information systems in a semi-arid area (southwest of Urmieh, northwest of Iran). Arabian J. Geosci., 6(4): 1229–1240. Doi: 10.1007/s12517-011-04 14-4.
  2. Cullis, A., D. B. Ali and B. Irwin. 2019. Water in Borana, Ethiopia: A study of the development, use and maintenance of water sources in the rural areas of Borana zone. J. Sci. Sustain. Develop., 13: 102–119.
  3. Tadele, D. and L. Lelisa. 2019. Assessment of water resources management and past works on water points development in Borana Rangelands, southern Oromia, Ethiopia. Int. J. Water Resour. Env. Eng., 11: 39–44.
  4. Azaiez, H., H. Gabtni and M. Bédir. 2021. Joint gravity and seismic reflection methods to characterize the deep aquifers in arid El-Beidha plain (central Tunisia, North Africa). Water. 13(9): 1310. Doi: 10.3390/w13091310.
  5. Alimi, S.A., O.O. Ige and J.C. Okeke. 2022. Assessing groundwater potentials of Kaduna state, northwestern Nigeria, using geographic information system (GIS) and remote sensing (RS) techniques. Arabian J. Geosci., 15(23):1741. DOI: 10.1007/s12517-022-11039-9.
  6. Khazri, D. and H. Gabtni. 2022. New structural model to understanding the subsurface hydrogeology system of the Ouled Asker groundwater, central Tunisian Atlassic Foreland, derived from an integrated geophysical approach. Arabian J. Geosci., 15(8): 738. Doi: 10.1007/s12517-022-09966-8.
  7. Muthamilselvan, A., A. Sekar and E. Ignatius. 2022. Identification of groundwater potential in hard rock aquifer systems using remote sensing, GIS and magnetic survey in Veppanthattai, Perambalur, Tamil nadu. J. Groundwater Sci. Eng., 10: 367-380.
  8. Sankaran, S. and S.R. Krishnan. 2022. Groundwater exploration using remote sensing and GIS techniques coupled with VES from hard rock terrain: A case study in Salem district, southern India. In Water quality, assessment and management in India. Ed S. Yadav, A.M. Negm and R.N. Yadava. pp 197-218. Doi: 10.1007/978-3-030-95687-5_10.
  9. Oyedele, A.A. 2019. Use of remote sensing and GIS techniques for groundwater exploration in the basement complex terrain of Ado-Ekiti, SW Nigeria. Appl. Water Sci., 9: 51. Doi: 10.1007/s13201-019-0917-9.
  10. Santhosh, M. and V. Thirukumaran. 2021. Demarcation of groundwater potential zones using geo-spatial technology in Edappadi block, Salem district, Tamil Nadu, India. Int. J. Geog. Geol., 10: 36-49.
  11. Ibrahim, A., et al. 2023. An integrated approach to unravel the structural controls on groundwater potentialities in hyper-arid regions using satellite and land-based geophysics: A case study in southwestern desert of Egypt. Survey Geophy., 44: 783–819.
  12. Hervé, G.D., et al. 2021. Groundwater prospecting using remote sensing and geoelectrical methods in the north Cameroon (Central Africa) metamorphic formations. Egyptian J. Remote Sensing Space Sci., 24: 933-943.
  13. Francés, A.P., et al. 2014. Hydrogeophysics and remote sensing for the design of hydrogeological conceptual models in hard rocks- Sardón catchment (Spain). J. Appl. Geophy., 110: 63-81.
  14. Dailey, D., et al. 2015. Geophysical, remote sensing, GIS and isotopic applications for a better understanding of the structural controls on groundwater flow in the Mojave desert, California. J. Hydrol. Reg. Studies. 3: 211-232.
  15. Ayyandurai, R. and V. Sellamuthu. 2016. Hydro-geophysics and remote sensing for the design of hydrogeological conceptual models in upper Gadilam river basin, Tamil Nadu, India. Indian Soc. Remote Sensing. 27: 13-22.
  16. Mohamaden, M.I.I., H.M. El-Sayed and A.Z. Hamouda. 2016. Combined application of electrical resistivity and GIS for groundwater exploration and subsurface mapping at northeast Sinai, Egypt. Egyptian J. Aquatic Res., 42: 17-26.
  17. Anees, M.T., et al. 2017. Applications of remote sensing, hydrology and geophysics for flood analysis. Indian J. Sci. Tech., 10: 1-10.
  18. Saadi, N., et al. 2011. Integrated remote sensing data utilization for investigating structural and tectonic history of the Ghadames basin, Libya. Int. J. Earth Obser. Geoinf., 13: 778-791.
  19. Ratib, S., et al. 2015. Integrating remote sensing and magnetic data for structural geology investigation in pegmatite areas in eastern Afghanistan. J. Appl. Remote Sensing. 9(1): 096097. Doi: 10.111 7/1.JRS.9. 096097.
  20. Amusuk, D.J., et al. 2016. Utilization of Landsat-8 data for lithological mapping of basement rocks of plateau state north-central nigeria. Int. Arch. Photogrammetry Remote Sensing Spatial Inf. Sci., XLII-4/W1: 335-337.
  21. Cengiz, O., E. Sener and F. Yagmurlu. 2006. A satellite image approach to the study of lineaments, circular structures and regional geology in the Golcuk crater district and its environs. J. Asian Earth Sci., 27: 155-163.
  22. Kumar, M.G., R. Bali and A.K. Agarwal. 2010. Integration of remote sensing and electrical sounding data for hydrogeological exploration: A case study of Bakhar watershed, India. Hydrol. Sci. J., 54(5): 949-960. Doi: 10.1623/hysj.54.5.949.
  23. Ogungbade, O., et al. 2021. A combined GIS, remote sensing and geophysical methods for groundwater potential assessment of Ilora, Oyo central, Nigeria. Env. Earth Sci., Doi: 10.21203/rs.3.rs-267236/v1. (Preprint)
  24. Zakariah, M.N.A., et al. 2021. Gravity analysis for subsurface characterization and depth estimation of Muda river basin, Kedah, peninsular Malaysia. Appl. Sci., 11(14): 6363. Doi: 10.3390/app11146 363.
  25. Helaly, A., et al. 2015. Delineating groundwater and subsurface structures by using 2D resistivity, gravity and 3D magnetic data interpretation around Cairo-Belbies desert road, Egypt. NRIAG J. Astro. Geophysics. 4: 134-146. Doi: 10.1016/J.Nrjag. 2015.06.004.
  26. Yihunie, T. 2003. Chemical Th-U-total Pb isochron ages of zircon and mozazite from granitic rocks of the Negele area, southern Ethiopia. J. Earth Planet sci., 50: 1-12.
  27. Abbate, E., P. Bruni and M. Sagri. 2015. Geology of Ethiopia: A review and geomorphological perspectives. In Landscapes and landforms of Ethiopia. Ed P. Billi. pp 33-64. DOI: 10.1007/978-94-017-8026-1_2.
  28. Asrat, A. and P. Barbey. 2003. Petrology, geochronology and Sr–Nd isotopic geochemistry of the Konso pluton, south-western Ethiopia: Implications for transition from convergence to extension in the Mozambique belt. Int. J. Earth Sci., 92: 873–890.
  29. Awoke, H. and F. Hailu. 2007. The geology of Yabelo area, southern Ethiopia. J. African Earth Sci., 71: 102-121.
  30. Weldegabriel, G., J.L. Aronson and R.C. Walter. 1990. Geology, geochronology and rift basin development in the central sector of the main Ethiopia rift. Geol. Soc. American Bulletin. 102: 439-458.
  31. Rampey, M.L., et al. 2014. Physical volcanology of the Gubisa formation, Kone volcanic complex, Ethiopia. J. African Earth Sci., 96: 212-219.
  32. Corti, G. 2009. Continental rift evolution: From rift initiation to incipient break-up in the main Ethiopian rift. Earth Sci. Reviews. 96: 1-53.
  33. Acocella, V., T. Korme and F. Salvini. 2003. Formation of normal faults along the axial zone of the Ethiopian rift. J. Structural Geol., 25: 503-513.
  34. Razack, M., et al. 2020. Water resource assessment of a complex volcanic system under semi-arid climate using numerical modeling: The Borena basin in southern Ethiopia. Water. 12(1): 276. Doi: 10.3390/w12010276.
  35. Geological Survey of Ethiopia. 2002. Annual report 2001/2002. Addis Ababa, Ethiopia.
  36. Gelana, G. 2012. Groundwater potential assessment in the volcanic plains south and southwestern of Yabello. Geol. Ecol. Landscape. 4: 28–55.
  37. Fanta, L. and O. Temesgen. 2017. Groundwater resource evaluation and assessment of Borena area. Ethiopian J. Sci. Sustain. Develop., 5: 19–39.
  38. Ndatuwong, L.G. and G.S. Yadav. 2014. Identifications of fractured zones in part of hard rock area of Sonebhadra district, U.P., India using integrated surface geophysical method for groundwater exploration. Arabian J. Geosci., 7: 1781-1789.
  39. Badamasi, S., B.A. Sawa and M.L. Garba. 2016. Groundwater potential zones mapping using remote sensing and geographic information system techniques in Zaria, Kaduna state, Nigeria. American Sci. Res. J. Eng., Tech. Sci., 24: 51-62.
  40. Aldhar, H., et al. 2018. Spatial analysis of lineaments and their tectonic significance using Landsat imagery in Alarasah area-southeastern Yemen. J. Geography Env. Earth Sci. Int., 18: 1-13.
  41. Silverman, B.W. 1982. Kernel density estimation using the fast Fourier transform. J. Royal Statistical Soc. Series C, Royal Statistical Soc., 31(1): 93-99.
  42. Telford, W.M., L.P. Geldart and R.E. Sheriff. 1990. Applied geophysics. Cambridge University Press, Cambridge, United Kingdom. pp 6-48.
  43. Davis, K. and Y. Li. 2009. Enhancement of depth estimation techniques with amplitude analysis. SEG 2009 International Exposition and Annual Meeting. Houston, USA. Proceedings, pp 908–912.
  44. Ali, M.Y., A.B. Watts and A. Farid. 2014. Gravity anomalies of the United Arab Emirates: Implications for basement structures and infra-Cambrian salt distribution. GeoArabia. 19: 85-112.
  45. Chen, Q., et al. 2022. Application of extended tilt angle and its 3D Euler Deconvolution to gravity data from the Longmenshan thrust belt and adjacent areas. J. Appl. Geophys., 206(8): 104769. Doi: 10.1016/j.jappgeo. 2022.104769.
  46. Chandra, P. 2015. Groundwater geophysics in hard rock (1st edn). CRC Press, London. Doi: 10.1201/b19255.
  47. Fashae, O.A., et al. 2014. Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: An integrated GIS and RS approach. Appl. Water Sci., 4: 19-38.
  48. Magaia, L.A., et al. 2017. Regional exploration technique of groundwater resource in the Precambrian areas of Mozambique through an integration of topographic and geophysical data. 35th International Geological Congress, Geoscience for society Groundwater and Hydrogeology T5.2 – Hydrogeology and hydrochemistry of arid and semi-arid Africa: A tribute to W. M. Edmunds 2188. Cape Town, South Africa.
  49. Epuh, E.E., et al. 2020. An integrated lineament extraction from satellite imagery and gravity anomaly maps for groundwater exploration in the Gongola basin. Remote Sens. Appl.: Soc. Env., 20: 100346. Doi: 10.1016/j.rsase.2020.100346.
  50. Chuma, C., et al. 2013. Application of remote sensing and geographical information systems in determining the groundwater potential in the crystalline basement of Bulawayo metropolitan area, Zimbabwe. Adv. Remote Sensing. 2: 149-161.
  51. Prabu, P. and B. Rajagopalan. 2013. Mapping of lineaments for groundwater targeting and sustainable water resource management in hard rock hydrogeological environment using RS-GIS (pp 235-247). In Climate change regional/local responses. Ed Y. Zhang and P. Ray. IntechOpen.
  52. Ojo, J.S., et al. 2015. GIS integrated geomorphological, geological and geoelectrical assessment of the groundwater potential of Akure Metropolis, southwest Nigeria. J. Earth Sci. Geotech. Eng., 5: 85-101.
  53. Verduzco, B., et al. 2004. New insights into magnetic derivatives for structural mapping. Leading Edge. 23: 116-119.
  54. Yassaghi, A. 2006. Integration of Landsat imagery interpretation and geomagnetic data on verification of deep-seated transverse fault lineaments in SE Zagros, Iran. Int. J. Remote Sensing. 27: 4529-4544.
  55. Nakamura, A. and P.R. Miligan. 2015. Total magnetic intensity (TMI) grid of Australia with variable reduction to pole (VRTP). Geoscience Australia. Doi: 10.4225/25/5625EB0429F0D.
  56. Cooper, G.R.J. and D.R. Cowan. 2006. Enhancing potential field data using filters based on the local phase. Computer Geosci., 32: 1585-1591.
  57. Araffa, S.A.S., H.S. Sabet and M.S. Shehata. 2016. Groundwater potentiality at El-Egma plateau, central Sinai, Egypt using geoelectrical, gravity and magnetic data. 7th International Conference water resources and arid environments. Riyadh, Saudi Arabia. Proceedings, pp 242-257.
  58. Rahman, A., I. Almallah and A. Mousa. 2022. Possibility of groundwater gathering using gravity data interpretation in Salman basin, Iraqi southern desert. J. Univ. Babylon Pure Appl. Sci., 30: 131-152.
  59. OWWDSE. 2008. Detailed reconnaissance geological study of Borena zone, Borena groundwater study project geology report. Oromia Water Works Design and Supervision Enterprise, Addis Ababa, Ethiopia.
  60. Yibas, B., et al. 2002. The tectonostratigraphy, granitoid geochronology and geological evolution of the Precambrian of southern Ethiopia. J. African Earth Sci., 34: 57-84.