Development and Optimization of Agricultural Husk-Epoxy Composites: A Hybrid Taguchi-GRA-PCA Approach for Enhanced Mechanical Performance

IJEP 45(10): 882-890 : Vol. 45 Issue. 10 (October 2025)

Anil Kumar1, Rishu Sharma1*, Jayant Pandurang Supale1 and Gajanan Shravan Datar2

1. G.B. Pant DSEU, Department of Mechanical Engineering, Okhla-I Campus, New Delhi – 110 020, India
2. Government College of Engineering and Research, Avasari, Pune – 412 406, Maharashtra, India

Abstract

Disposal of agricultural husk waste is a critical issue in current agricultural waste management. It has been found that these husks can be used in producing composite fiberboard when properly mixed with epoxy. To develop a useful fiberboard, three main factors were selected: the reinforcement material, its weight percentage and curing temperature. Mustard husk powder (MHP), wheat husk powder (WHP) and rice husk powder (RHP) are the three chosen reinforcement materials. These are added at weight percentages of 10%, 20% and 30%. The three levels of curing temperature are 80°C, 100°C and 120°C, representing the third factor. The L9 orthogonal array from the Taguchi design was used to create nine composite samples. Tensile and flexural strength tests were performed to assess the material characteristics. The test results were validated using grey relation analysis and principal component analysis alongside Taguchi analysis to determine the optimal design parameters. The research indicates that, for higher mechanical strength, rice husk powder at 20% reinforcement weight and a curing temperature of 120°C is the best configuration.

Keywords

Agricultural husk waste, Composite fiberboard, Tensile strength, Flexural strength, Taguchi-GRA-PCA

References

  1. John, M.J. and S. Thomas. 2008. Biofibres and biocomposites. Carbohydrate Polymers. 71(3): 343-364.
  2. Ashori, A. 2008. Wood-plastic composites as promising green composites for automotive industries. Bioresour. Tech., 99(11): 4661-4667.
  3. Gupta, M., et al. 2019. Impact of chemical treatments on rice husk composites. Mater. Today: Proceedings. 18(2): 234-240.
  4. Martijanti, M., et al. 2023. Comparison of mechanical properties between ash and rice husk reinforced epoxy composites. Dinamika Teknik Mesin. 13(2): 145-156. DOI: 10.29303/dtm.v13i2.649.
  5. Patel, D.K., et al. 2024. Comparative review of mechanical properties of rice straw and rice husk fiber reinforced polymer composite. Key Eng. Mater. 981: 151-164.
  6. Abdullahi, U. 2022. Utilization and mechanical properties of rice husk as useful agro waste and reinforcement in composites fabrication- A critical review. African J. Eng. Env. Res., 3(2): 1-20. 
  7. Singh, K. J., R. Kumar and R. Ramratan. 2020. Experimental investigation on mechanical properties of wheat husk pulp reinforced epoxy composites. Adv. Eng. Forum. 36: 114-125.
  8. Cherkashina, N.I., et al. 2023. Synthesis and characteristics of composite material with a plant-based filler. ChemEng., 7(2): 38.
  9. Pramudia, M., M.K. Umami and A. Prihantoko. 2022. Effect of fiber volume fraction on tensile strength and fracture analysis of corn husk reinforced epoxy resin composite. MATEC Web Conf., 372: 02005.
  10. Junior, R.R.R., et al. 2024. Impact evaluation of corn husk reinforced epoxy composites. In Composite materials: Sustainable and eco-friendly mate-rials and application. Proceedings, pp 21-31.
  11. Singh, S., et al. 2020. Chemical modification of lignocellulosic fibers for polymer composites. Polymers Env., 28(5): 1230-1242.
  12. Haque, M.M., et al. 2012. Adhesion properties of bio-composites with epoxy resin matrix. J. Composite Mater., 46(15): 1851-1860.
  13. Mathew, G., et al. 2014. Mechanical properties of natural filler-reinforced composites. Composites Part B: Eng., 56: 674-680.
  14. Kumar, R., et al. 2017. Influence of filler content on epoxy composites. J. Appl. Polymer Sci., 134 (14): 44678.
  15. Zhang, Z., et al. 2015. Multi-objective optimization in composite fabrication. Procedia Manufacturing. 6(8): 343-348.
  16. Sharma, S., et al. 2021. Dimensionality reduction in composite design using PCA. Composite Interfaces. 28(6): 469-481.
  17. Patnaik, A., et al. 2016. Optimization of mechanical properties in hybrid composites. Mater. Design. 97(7): 123-130.
  18. Agarwal, V., et al. 2023. Optimization and characterization studies of dissimilar friction stir welding parameters of brass and aluminium alloy 6063 using Taguchi. Adv. Mater. Sci. Eng., 8275323. DOI: 10.1 155/2023/8275323.
  19. Kumar, A., A. K. Chanda and S. Angra. 2021. Opti-mization of stiffness properties of composite sandwich using hybrid Taguchi-GRA-PCA. Evergreen. 8(2): 310-317. DOI: 10.5109/4480708.
  20. Amin, A., et al. 2015. Sustainability and performance of natural fiber composites. Composite Sci. Tech., 67(12): 2350-2360.
  21. Jain, S., et al. 2022. Emerging trends in bio-composites for sustainability. Polymers. 14(3): 450.
  22. Chandrasekaran, M., et al. 2020. Mechanical performance of bio-composites: A review. Mater. Today: Proceedings. 32(8): 467-473.
  23. Kumar, A. and S. Singh. 2023. Fabrication and optimization of wear behaviour of Citrus limetta peel particulate composite using hybrid Taguchi-GRA-PCA. Evergreen. 10(3): 1323-1329.
  24. Kaushik, N. and S. Singhal. 2018. Wear conduct of aluminium matrix composites: A parametric strategy using Taguchi based GRA integrated with weight method. Cogent Eng., 5(1): 1467196. DOI: 10.10 80/23311916.2018.1467196.
  25. Kaushik, N. and S. Singhal. 2018. Hybrid combination of Taguchi-GRA-PCA for optimization of wear behaviour in AA6063/SiCp matrix composite. Production Manufacturing Res., 6(1): 171-189. DOI: 10.1080/21693277.2018.1479666.
  26. Kumar, A., A. K. Chanda and S. Angra. 2021. Application of hybrid Taguchi-GRA-PCA and ANOVA in optimisation of deformation properties of sandwich structure. Int. J. Nanotech., 18(11/12): 951. DOI: 10.1504/IJNT.2021.119220.
  27. Kumar, A., S. Kumar and S. Jindal. 2024. Enhancing composite material fabrication through optimization: Employing fruit peel or shell powder as reinforcements using Taguchi-GRA-PCA methodology. Evergreen. 11(2): 701-712.
  28. ASTM D3039. 2014. Standard test method for tensile properties of polymer matrix composite materials. ASTM International.
  29. ASTM D790. 2017. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International.
  30. Kumar, A., B. Dahiya and D. Grover. 2024. Optimizing agricultural waste powder epoxy composite for enhanced strength using a hybrid Taguchi-GRA-PCA approach. Evergreen. 11(2): 713-721.