IJEP 45(10): 900-910 : Vol. 45 Issue. 10 (October 2025)
Vishalakshi Subramanian1, Priyanka Ramamoorthi1 and Kannan Dorai Pandian2*
1. Thiagarajar College, Department of Botany, Madurai – 625 009, Tamil Nadu, India
2. Pondicherry University, Department of Ecology and Environmental Sciences, Chinna Kalapet, Puducherry – 605 014, India
Abstract
The increasing impact of pollution poses a serious threat to the environment, causing ecological disturbances and major concerns for human health. The negative effects include exploring microbial-based methods for breaking down plastic waste. This study isolated fungal species from samples collected from long-term landfilled plastic waste sites and weathered acrylic wall paint. These fungal isolates were screened and identified using established protocols, leading to the discovery of new strains. The degradation processes were assessed using Fourier transform infra-red (FTIR) spectroscopy to detect changes in the chemical structure of polymers and scanning electron microscopy (SEM) to examine surface morphology alterations in the polymers. The study identified effective fungal species, namely Phytophthora cambivora and Alterneria sp., on polypropylene and acrylic polymers, respectively. Polymer films treated with these fungal isolates showed significant changes in FTIR peaks, indicating modifications in the chemical structure of the polymers. The fungi-treated films also displayed surface morphological changes after incubation for the biodegradation process. This research demonstrates the ability of these newly isolated fungal species to grow on polymers and alter their chemical composition by using them as the sole carbon source, thereby supporting biological methods for plastic waste management.
Keywords
Plastic pollution, Biodegradation, Acrylic degradation, Polypropylene degradation, Soil fungi, Fourier transform infra-red, scanning electron microscopy
References
- Fachrul, M.F., et al. 2021. Degradation of polyethylene plastic waste by indigenous microbial consortium and fungi. Indonesian J. Urban Env. Tech., 5(1): 86–103.
- Aragaw, T.A. 2020. Surgical face masks as a potential source for microplastic pollution in the Covid-19 scenario. Marine poll. bulletin. 159: 111517.
- Silva, D., et al. 2021. Gamma radiation for sterilization of textile-based materials for personal protective equipment. Polymer Degradation Stability. 194: 109750.
- Kannan, G., et al. 2023. Personal protective equipment (PPE) pollution driven by Covid-19 pandemic in Marina beach, the longest urban beach in Asia: abundance, distribution and analytical characterization. Marine Poll. Bulletin. 186: 114476.
- Hasan, M., et al. 2023. Personal protective equipment-derived pollution during Covid-19 era: A critical review of ecotoxicology impacts, intervention strategies and future challenges. Sci. Total Env., 887: 164164.
- Dargaville, T., K. Spann and M. Celina. 2020. Opinion to address the personal protective equipment shortage in the global community during the Covid-19 outbreak. Polymer degradation stability. 176: 109162.
- Lenz, R., et al. 2015. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Marine poll. bulletin. 100(1): 82-91.
- Periyasamy, A.P. and A. Tehrani-Bagha. 2022. A review on microplastic emission from textile materials and its reduction techniques. Polymer Degradation Stability. 199: 109901. DOI: 10.1016/j.polym degradstab.2022.109901.
- Glaser, J.A. 2019. Biological degradation of polymers in the environment. In Plastics in the environment. Ed A. Gomiero. IntechOpen. doi: 10.5772/intechopen.85124.
- Kale, S.K., et al. 2015. Microbial degradation of plastic: a review. J. Biochem. Tech., 6(2): 952-961.
- Li, D., et al. 2020. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nature Food. 1(11): 746–754. doi: 10.1038/s43016-020-00171-y.
- Skariyachan, S., et al. 2018. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polymer Degradation Stability. 149: 52-68.
- Wróbel, M., et al. 2022. Selection of micro-organisms capable of polyethylene (PE) and polypropylene (PP) degradation. Microbiol. res., 267: 127251.
- Rani, A., P. Singh and R. Kumar. 2020. Microbial deterioration of high-density polyethylene by selected microorganisms. J. Applied Biol. Biotech., 8(6): 64-66. DOI: 10.7324/JABB.2020.80611.
- Jirešová, J., et al. 2025. Growth of Fusarium solani and Cladosporium halotolerans on agar: modelling and inhibition by a non-thermal plasma. J. Appl. Microbiol., 136(2). doi: 10.1093/jambio/lxaf036.
- Montazer, Z., M.B. Habibi Najafi and D.B. Levin. 2020. Challenges with verifying microbial degradation of polyethylene. Polymers. 12: 123. DOI: 10.33 90/polym12010123.
- Zhang, Y., et al. 2022. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotech. Adv., 60: 107991. DOI: 10.1016/j.biotechadv.2022.107991.
- Rojas-Trejo, M. F., et al. 2025. Impact of combined thermo- and photo-oxidation on the physico-chemical properties of oxo-biodegradable low-density polyethylene films. Polymers. 17(2): 1–17. doi: 10. 3390/polym17020193.
- Mohanan, N., et al. 2020. Microbial and enzymatic degradation of synthetic plastics. Frontiers Micro-biol., 11: 580709. DOI: 10.3389/fmicb.2020.580 709.
- Nowak, B., et al. 2021. The composition of poly (vinyl chloride) with polylactide/poly (butylene terephthalate-co-butylene sebacate) and its biodegradation by Phanerochaete chrysosporium. Int. Biodete-rioration Biodegradation. 157: 105153.
- Qiao, R., et al. 2019. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota sysbiosis in the gut of zebrafish. Chemosphere. 236: 124334.
- Narancic, T. and K. E. O’Connor. 2019. Plastic waste as a global challenge: Are biodegradable plastics the answer to the plastic waste problem? Microbiol., 165(2): 129-137.
- Montazer, Z., M. B. Habibi Najafi and D. B. Levin. 2019. Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. Canadian J. Microbiol., 65(3): 224-234.
- Liu, J., et al. 2018. Redox cofactor engineering in industrial micro-organisms: Strategies, recent applications and future directions. J. Ind. Microbiol. Biotech., 45(5): 313-327.
- Cruz-Medina, R., et al. 2021. Curing of cellulose hydrogels by UV radiation for mechanical reinforcement. Polymers. 13(14): 2342.
- Khoramnejadian, S. 2013. Microbial degradation of starch based polypropylene. J. Pure Appl. Micro-biol., 7: 2857-2860.
- Fontanella, S., et al. 2013. Comparison of biodegradability of various polypropylene films containing pro-oxidant additives based on Mn, Mn/Fe or Co. Polymer degradation stability. 98: 875-884.
- Sepperumal, U. and M. Markandan. 2014. Growth of Actinomycetes and Pseudomonas sp., biofilms on abiotically pretreated polypropylene surface. European J. Zool. Res., 3: 6-17.
- Miloloža, M., et al. 2022. Biotreatment strategies for the removal of microplastics from freshwater systems: A review. Env. chem. letters. 20(2): 1377-1402.
- Gaytán, I., M. Burelo and H. Loza-Tavera. 2021. Current status on the biodegradability of acrylic polymers: Micro-organisms, enzymes and metabolic pathways involved. Appl. Microbiol. Biotech., 105: 991–1006. DOI: 10.1007/s00253-020-11073-1.
- Stahl, J. D., et al. 2000. Biodegradation of super-absorbent polymers in soil. Env. Sci. Poll. Res., 7: 83–88. DOI: 10.1065/espr199912.014.
- Jeon, H.J. and M.N. Kim. 2016. Isolation of mesophilic bacterium for biodegradation of polypropylene. Int. Biodeterioration Biodegradation. 115: 244–249. DOI: 10.1016/j.ibiod.2016.08.025.
- Jadaun, J. S., et al. 2022. Biodegradation of plastics for sustainable environment. Bioresour. Tech., 347: 126697.
- Taylor, A. E., P. J. Bottomley and L. Semprini. 2018. Contrasting growth properties of Nocardioides JS614 on three different vinyl halides. Appl. Microbiol. Biotech., 102: 1859-1867.
- Peña-Ortiz, L., et al. 2020. Impact of oxygen supply and scale-up on Mycobacterium smegmatis cultivation and mycofactocin formation. Frontiers Bioeng. Biotech., 8: 593781.
- Gumbi, A. S., et al. 2019. Isolation and characterization of Pseudomonas aeruginosa and Brevibacillus species and their potential to biodegrade polyethylene material. Sci. World J., 14(4): 57-61.
- Mosalaei, S., et al. 2021. Assessment of fungal bioaerosols and particulate matter characteristics in indoor and outdoor air of veterinary clinics. J. Env. Health Sci. Eng., 19(2): 1773-1780.
- Wang, J., L. Jiang and H. Sun. 2021. Early evidence for beer drinking in a 9000-year-old platform mound in southern China. PLoS One. 16(8): e0255833.
- Hidayat, I., A. Alamsyah and E. Suryati. 2024. Preliminary screening on antibacterial crude secondary metabolites extracted from bacterial symbionts and identification of functional bioactive compounds by FTIR, HPLC and gas chromatography–mass spectrometry. Molecules. 29(12): 2914. DOI: 10.33 90/molecules29122914.
- Das, M.P. and S. Kumar. 2015. An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech. 5: 81–86. DOI: 10.1007/s13205-014-0205-1.
- Gajendiran, A., S. Krishnamoorthy and J. Abraham. 2016. Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech., 6:1-6.
- Samat, A.F., D. Carter and A. Abbas. 2023. Biodeterioration of pretreated polypropylene by Aspergillus terreus and Engyodontium album. Npj Mater. Degradation. 7(1): 28. DOI: 10.1038/s41529-023-00342-9.
- Thakur, B., et al. 2023. Biodegradation of different types of microplastics: Molecular mechanism and degradation efficiency. Sci. Total Env., 877: 162912.
- Helen, A. S., E. C. Uche and F.S. Hamid. 2017. Screening for polypropylene degradation potential of bacteria Isolated from mangrove ecosystems in peninsular Malaysia. Int. J. Biosci. Biochem. Bioin-formatics. 7(4): 245–251. DOI: 10.17706/ijbbb.20 17.7.4.245-251.
- Ahmedzade, P., et al. 2017. Irradiated recycled high density polyethylene usage as a modifier for bitumen. J. Mater. Civil Eng., 29(3): 04016233. DOI: 10.1061/(ASCE)MT.1943-5533.0001757.
- Magnin, A., et al. 2020. Evaluation of biological degradation of polyurethanes. Biotech. Adv., 39: 107457. DOI: 10.1016/j.biotechadv.2019.10745 7.
- Velrajan, M. 2014. Evaluation of biodegradation of plastics. Int. J. Innov. Res. Develop., 3(7): 185–190.
- Castillo, L.A. and S.E. Barbosa. 2024. Polymer nano-composites based on talc. In Chemical physics of polymer nanocomposites: Processing, morphology, structure, thermodynamics, rheology. Ed V.V. Myasoedova, S. Thomas and H.J. Maria. Wiley. pp 295–342. DOI: 10.1002/9783527837021. ch11.
- Ahmed, R. S. and M.D. Swargiary. 2021. Plastic and petroleum hydrocarbon degrading potentials of single and mixed bacterial cultures isolated from garbage areas of Darrang, Assam. Nature Env. Poll. Tech., 20(1): 275-280.
- Ghosh, T. 2021. Biodegradation of low-density polyethylene (LDPE) by halophilic bacteria isolated from Bay of Bengal water. Int. J. Env. Res. Public Health. 18(2): 912.
- Srivastava, A., et al. 2020. Polypropylene degradation potential of microbes isolated from dumping site. Poll. Res., 39: 282-291.
- Mukherjee, S. and S. Chatterjee. 2014. A comparative study of commercially available plastic carry bag biodegradation by micro-organisms isolated from hydrocarbon effluent enriched soil. Int. J. Curr. Microbiol. Appl. Sci., 3(5): 318-325.
- Fernández-Sanmartín, P., et al. 2024. ATR-FTIR characterisation of daily-use plastics mycodegradation. Ecotoxicol. Env. Safety. 286: 117232. DOI: 10.1016/j.ecoenv.2024.117232.
- Ingavale, R.R. and P.D. Raut. 2018. Comparative biodegradation studies of LDPE and HDPE using Bacillus weihenstephanensis isolated from garbage soil. Nature Env. Poll. Tech., 17: 649-655.
- Sabatini, V., et al. 2018. Protective features, durability and biodegradation study of acrylic and methacrylic fluorinated polymer coatings for marble protection. Progress Organic Coatings. 114: 47–57. DOI: 10.10 16/j.porgcoat.2017.10.003.
- Habib, S., et al. 2020. Biodeterioration of untreated polypropylene microplastic particles by Antarctic bacteria. Polymers. 12(11): 2616.
- Johnston, B., et al. 2022. Bioconversion of plastic waste based on mass full carbon backbone polymeric materials to value-added polyhydroxyalka-noates (PHAs). Bioeng., 9(9): 432. doi: 10.3390/bioengineering 9090432.
- Perveen, K., et al. 2022. Antifungal potential, chemical composition of Chlorella vulgaris and SEM analysis of morphological changes in Fusarium oxysporum. Saudi J. Biol. Sci., 29: 2501-2505. DOI: 10.1016/j.sjbs.2021.12.033.
- Gkoutselis, G., et al. 2021. Microplastics accumulate fungal pathogens in terrestrial ecosystems. Sci. Reports. 11(1): 13214.
- Amparán, M.A.A., et al. 2025. Review and future outlook for the removal of microplastics by physical, biological and chemical methods in water bodies and wastewaters. Env. Monit. Assess., 197(4): 429. doi: 10.1007/s10661-025-13883-0.
- Auta, H., et al. 2017. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Marine Poll. Bulletin. 127: 15–21.