Hydrogen production from axenic isolated cultures and consortia of Clostridium thiosulphatireducens and Enterobacter aerogenes on soybean straw

IJEP 45(2): 103-113 : Vol. 45 Issue. 2 (February 2025)

Pradnya Gautam Kedar1, Aparna Nair2, Ram Ashok Konale1 and Sopan Tukaram Ingle1*

1. KBC North Maharashtra University, School of Environmental and Earth Sciences, Jalgaon – 425 001, Maharashtra, India
2. Curo Biosciences Pvt. Ltd., Nagpur – 440 020, Maharashtra, India

Abstract

In this study, biohydrogen production from soybean straw in an anaerobic batch reactor (sera bottles) using H2-producing bacteria (Clostridium thiosulphatireducens and Enterobacter aerogenes) was investigated. Candidate strains were identified and analyzed by phylogenetic analysis. These bacteria were tested for their biohydrogen production individually as well as in combination. C. thiosulphatireducens, E. aerogenes and their co-culture inoculums were named as strain I, strain II and co-culture inoculum, respectively. The fermentation process was carried out at 37°C at pH 6. Physico-chemical characteristics of substrate and 16S rDNA gene sequences were investigated. The maximum biohydrogen yield obtained was 1.39 mol of H2/g TS. Byproducts formed during fermentation were acetic, butyric, propionic and formic acid. Biohydrogen has drawn the attention of researchers all over the world due to its advantages over conventional fuels. While highly promising as a biofuel, the process of biohydrogen production is still not economically viable and environmentally sustainable. Advances in improvements of hydrogen yield through sustainable means are urgently needed through process modifications, choice of substrates and microbial analysis.

Keywords

Biohydrogen, soybean straw, Clostridium thiosulpha-tireducens, Enterobacter aerogenes

References

  1. Sekoai, P.T., A.O. Ayeni and M.O. Daramola. 2017. Parametric optimization of biohydrogen production from potato waste and scale-up study using immobilized anaerobic mixed sludge. Waste Biomass Valor., 10: 1177–1189. DOI: 10.1007/s12649-017 -0136-2.
  2. Lay, C.H., et al. 2019. Anaerobic biohydrogen production using rice husk-based biologics. Waste Biomass Valor., 11: 1059–1068 DOI: 10.1007/s126 49-018-00544-2.
  3. Ruiz-Marin, A., Y. Canedo-López and P. Chávez-Fuentes. 2020. Biohydrogen production by Chlorella vulgaris and Scenedesmus obliquus immobilized cultivated in artificial wastewater under different light quality. AMB Expr.,10: 191. DOI: 10.1186/s1356 8-020-01129-w.
  4. Sivagurunathan, P. and C.Y. Lin. 2019. Biohydrogen production from beverage wastewater using selectively enriched mixed culture. Waste Biomass Valor., 11: 1049-1058. DOI: 10.1007/s12649-019-0060 6-z.
  5. Lin, C.Y., C.H. Lay and B. Sen. 2012. Fermentative hydrogen production from wastewaters: A review and prognosis. Int. J. Hydrogen Energy. 37(20): 15632-15642. doi: 10.1016/j.ijhydene.02.072.
  6. Zhang, J., et al. 2022. Fermentative hydrogen production from lignocellulose by mesophilic Clostri-dium populeti FZ10 newly isolated from microcrystalline cellulose-acclimated compost. Appl. Sci., 12(19): 9562. DOI: 10.3390/app 1219 9562.
  7. Wang, S., et al. 2017. Optimization and modelling of biohydrogen production by mixed bacterial cultures from raw cassava starch. Front. Chem. Sci. Eng., 11: 100–106. DOI: 10.1007/s11705-017-16 17-3.
  8. Mishra, P., et al. 2021. Synergistic effect of ultrasonic and microwave pretreatment on improved biohydrogen generation from palm oil mill effluent. Biomass Conv. Bioref., 12: 3655–3662. DOI: 10.1 007/s13399-021-01285-4.
  9. Zhang, Q., et al. 2020. Enhanced biohydrogen production from cotton stalk hydrolysate of Entero-bacter cloacae WL1318 by overexpression of the formate hydrogen lyase activator gene. Biotech. Biofuels. 13: 94. DOI: 10.1186/s13068-020-0173 3-9.
  10. Razak, S.A., et al. 2020. Biohydrogen production from photodecomposition of various cellulosic biomass wastes using metal-TiO2catalysts. Biomass Conv. Bioref., 13: 8701–8712. DOI: 10.1007/s133 99-020-01164-4.
  11. Abdelsalam, E.M., et al. 2021. Effects of He–Ne red and green laser irradiation on purple non-sulphur bacteria for biohydrogen production from food wastes. Biomass Conv. Bioref., 13: 13883–13895. DOI: 10.1007/s13399-021-02084-7.
  12. Mishra, P., et al. 2017. Fermentative hydrogen production from indigenous mesophilic strain Bacillus anthracis PUNAJAN 1 newly isolated from palm oil mill effluent. Int. J. Hydrogen Energy. 42: 16054-16063. DOI: 10.1016/j.ijhydene.2017.05.120.
  13. Qureshi, S.S., et al. 2019. An overview of OPS from oil palm industry as feedstock for bio-oil production. Biomass Conv. Bioref., 9: 827–841. DOI: 10.1 007/s13399-019-00381-w.
  14. Hitam, C.N.C. and A.A. Jalil. 2020. A review on biohydrogen production through photo-fermentation of lignocellulosic biomass. Biomass Conv. Bioref., 13: 8465–8483. DOI: 10.1007/s13399-020-011 40-y.
  15. Tu, W.C. and J. P. Hallett. 2019. Recent advances in the pretreatment of lignocellulosic biomass. Curr. Opinion Green Sustain. Chem., 20: 11-17. DOI: 10.1016/j.cogsc.2019.07.004.
  16. Ragauskas, A.J., et al. 2006. The path forward for biofuels and biomaterials. American Assoc. Adv. Sci., 311: 484-489. DOI: 10.1126/science. 11147 36.
  17. Lynd, L.R., et al. 2008. How biotech can transform biofuels. Nat. Biotech., 26: 169–172. DOI: 10.1 038/nbt0208-169.
  18. APHA.1995. Standard methods for the examination of water and wastewater (19th edn). American Public Health Association.
  19. Van Soest, P.J., J.B. Robertson and B.A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74(10): 3583-3597. DOI: 10.3168/jds.s0022-0302(91)78551-2.
  20. Balch, W.E., et al. 1979. Methanogens: Re-evaluation of a unique biological group. Microbiol. Reviews. 43: 260-296. DOI: 10.1128/mr.43.2.260-296.19 79.
  21. Kumar, N., A. Ghosh and D. Das. 2001. Redirection of biochemical pathways for the enhancement of H2production by Enterobacter cloacae. Biotech. Letters. 23: 537–541. DOI: 10.1023/A:1010334 803961.
  22. Li, Y., et al. 2019. Strain screening and optimization of biohydrogen production by Enterobacter aerogenes EB-06 from glycerol fermentation. Bioresour. Bioprocess. 6: 15. DOI: 10.1186/s4064 3-019-0250-z.
  23. Dursun, N. and H. Gülsen. 2021. Evaluation of industrial waste black cumin (Nigella sativa) for biohydrogen production without pretreatment. Env. Develop. Sustain., 24: 12182–12202. DOI: 10.1 007/s10668-021-01939-3.
  24. Kawagoshi, Y., et al. 2005. Effect of inoculum conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production. J. Biosci. Bioeng., 100: 524-530. DOI: 10.1 263/jbb.100.524.
  25. El-Ghali, A., et al. 2012. Separation and characterization of new cellulosic fibres from the Juncus acutus L plant. BioRes., 7(2): 2002-2018. DOI 10.1 5376/biores.7.2.2002-2018.
  26. Xiao, L., et al. 2011. Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production. BioRes., 6(2): 1576-1598. DOI: 10.15376/biores.6.2.1576-1598.
  27. Mechery, J., et al. 2019. Biohydrogen production from acidic and alkaline hydrolysates of paddy straw using locally isolated facultative bacteria through dark fermentation. Biomass Conv. Bioref., 11: 1263–1272. DOI: 10.1007/s13399-019-005 15-0.
  28. Martinez-Burgos, W.J., et al. 2021. Biohydrogen production from agro-industrial wastes using clostridium beijerinckii and isolated bacteria as inoculum. Bioenerg. Res., 15: 987–997. DOI: 10.10 07/s12155-021-10358-1.
  29. Abreu, A.A., et al. 2011. Strategies to suppress hydrogen consuming micro-organisms affect macro- and micro-scale structure and microbiology of granular sludge. Biotech, Bioeng., 108: 1766-1775. DOI: 10.1002/bit.23145.
  30. Woo, J.H. and Y.C. Song. 2010. Biohydrogen production from sewage sludge using a continuous hydrogen fermentation system with a heat treatment vessel. KSCE J. Civil Eng., 14: 673–679. DOI: 10.10 07/s12205-010-0686-3.
  31. Pachiega, R., et al. 2018. Obtaining and characterization of mesophilic bacterial consortia from tropical sludges applied on biohydrogen production. Waste Biomass Valor., 10: 1493–1502. DOI: 10.10 07/s12649-017-0185-6.
  32. Patel, S.K.S., et al. 2014. Enhancement in hydrogen production by co-cultures of Bacillus and Entero-bacter. Int. J. Hydrogen Energy. 39: 14663-14668. DOI: 10.1016/j.ijhydene.2014.07.084.
  33. Jinqing, J. and S. Laihong. 2024. Screening of enhanced biohydrogen production from anaerobic fermentation amended with nano-sized barium ferrite supported by aluminum oxide, Int. J. Hydrogen Energy. 69: 961-973. DOI: 10.1016/j.ijhydene.2024. 05.070.
  34. Elbeshbishy, E., et al. 2011. Single and combined effect of various pre-treatment methods for bio-hydrogen production from food waste. Int. J. Hydrogen Energy. 36: 11379-11387. DOI: 10.1016/j.ijhydene.2011.02.067.
  35. Saady, N.M.C. 2013. Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: Unresolved challenge. Int. J. Hydrogen Energy. 36: 13172-13191. DOI: 10.1016/j.ijhydene. 2013.07.122.
  36. Cao, X. and Y. Zhao. 2009. The influence of sodium on biohydrogen production from food waste by anaerobic fermentation. J. Mater. Cycles Waste Manage., 11: 244–250. DOI: 10.1007/s10163-009-0237-5.
  37. Van Ginkel, S. and B.E. Logan. 2005. Inhibition of biohydrogen production by undissociated acetic and butyric acids. Env. Sci. Tech., 39: 9351–9356. DOI: 10.1021/es0510515.
  38. Dabrock, B., H. Bahl and G. Gottschalk. 1992. Parameters affecting solvent production by Clostri-dium pasteurianum. Appl. Env. Microbiol., 58. DOI: 10.1128/aem.58.4.1233-1239.1992.
  39. Mandal, B., K. Nath and D. Das. 2006. Improvement of biohydrogen production under decreased partial pressure of H2by Enterobacter cloacae. Biotech. Letters. 28: 831–835. DOI: 10.1007/s105 29-006-9008-8.
  40. Sekoai, P.T. and E.B. Gueguim Kana. 2013. A two-stage modelling and optimization of biohydrogen production from a mixture of agro-municipal waste. Int. J. Hydrogen Energy. 38: 8657-8663. DOI: 10.1 016/j.ijhydene. 2013.04.130.
  41. Chen, W., 2005. Fermentative hydrogen production with CGS5 isolated from anaerobic sewage sludge. Int. J. Hydrogen Energy. 30: 1063-1070. DOI: 10.1016/j.ijhydene.2004.09.008.
  42. Ferchichi, M., et al. 2005. Influence of culture parameters on biological hydrogen production by Clostridium saccharoperbutylacetonicum ATCC 27021. World J. Microbiol. Biotech., 21: 855–862. DOI: 10.1007/s11274-004-5972-0.
  43. Wang, M.Y., B.H. Olson and J.S. Chang. 2008. Relationship among growth parameters for Clostridium butyricum, hydrogene expression and biohydrogen production in a sucrose-supplemented batch reactor. Appl. Microbiol. Biotech., 78: 525–532. DOI: 10.1007/s00253-007-1317-x.
  44. Kurokawa, T. and S. Tanisho. 2005. Effects of formate on fermentative hydrogen production by Enterobacter aerogenes. Marine Biotech., 7: 112–118. DOI: 10.1007/s10126-004-3088-z.
  45. Leonhartsberger, S., I. Korsa and A. Böck. 2002. The molecular biology of formate metabolism in Enterobacteria. J. Mol. Microbiol. Biotech., 4(3): 269-276.
  46. Vidal-Limón, A.M., et al. 2017. Electron transfer pathways analysis of oxygen tolerant [NiFe]-hydrogenases for hydrogen production: A quantum
    mechanics/molecular mechanics – Statistical coupled analysis. Int. J. Hydrogen Energy. 42: 20494-20502. DOI: 10.1016/j.ijhydene.2017.07. 019.
  47. Wang, J. and Y. Yin. 2017. Introduction (chapter 1). In Biohydrogen production from organic wastes. Springer Singapore. pp 1-17. doi: 10.1007/978-981-10-4675-9_1.
  48. Garcia-Peña, E.I., et al. 2013. Biohydrogen production based on the evaluation of kinetic parameters of a mixed microbial culture using glucose and fruit–vegetable waste as feedstocks. Appl. Biochem. Biotech., 171: 279–293. DOI: 10.1007/s12010-013-0341-9.
  49. Valdez-Guzmán, B. E., et al. 2019. Enhancing biohydrogen production from Agave tequilana bagasse: Detoxified vs undetoxified acid hydrolysates. Bioresour. Tech., 276: 74-80. DOI: 10.1016/j.bio tech.2018.12.101.
  50. Rambabu, K., et al. 2021. Ferric oxide/date seed activated carbon nanocomposites mediated dark fermentation of date fruit wastes for enriched biohy-drogen production. Int. J. Hydrogen Energy. 46: 16631-16643. DOI: 10.1016/j.ijhydene.2020.06. 108.
  51. Islam, M.S., C. Guo and C.Z. Liu. 2018. Enhanced hydrogen and volatile fatty acid production from sweet sorghum stalks by two-steps dark fermentation with dilute acid treatment in between. Int. J. Hydrogen Energy. 43: 659-666. DOI: 10.1016/j.ij hydene.2017.11. 059.
  52. Liu, F. and B. Fang. 2007. Optimization of biohy-drogen production from biodiesel wastes by Klebsiella pneumoniae. Biotech. J., 2(3): 374-380. DOI: 10.1002/biot.200600102.
  53. Rao, R., R.K. Sani and S. Kumar. 2018. Biohydrogen production from lignocellulosic feedstocks using extremophiles. In Extremophilic microbial processing of lignocellulosic feedstocks to biofuels, value-added products and usable power. Ed R.K. Sani and N.K. Rathinam. Springer, Cham. pp 79–96. DOI: 10.1007/978-3-319-74459-9_5.