Comprehensive Characterization and Performance Study of Cotton Stalk and Walnut Shell Biochar for Textile Wastewater Treatment

IJEP 45(5): 391-405 : Vol. 45 Issue. 5 (May 2025)

Vishwa Vraj Shah1,2 and Narendra Madhavlal Patel3*

1. Gujarat Technological University, Department of Environmental Engineering, Ahmedabad – 380 009, Gujarat, India
2. L.D. College of Engineering, Department of Environmental Engineering, Ahmedabad – 380 015, Gujarat, India
3. Government Engineering College, Chemical Engineering Department, Valsad, Gujarat – 396 001, India

Abstract

In this study, biochar derived from abundant lignocellulosic agricultural waste, such as cotton stalk (CS) and walnut shell (WS), was applied as an advanced textile wastewater treatment technique. The walnet shell and cotton stalk biochar were synthesized at three different temperatures using slow pyrolysis at a heating rate of 10°C/min for 2 hr in a muffle furnace at 350°C, 550°C and 800°C and they were further characterized using advanced techniques, such as Brunauer Emmett Teller (BET), Fourier transform infrared (FTIR) and field emission scanning electron microscope (FeSEM). Moreover, batch-scale adsorption studies were conducted at constant pH and dye concentration with varied adsorbent dosages (0.1–1.0 g)/50 mL of simulated textile wastewater. Additionally, the performance of cotton stalk (C1, C2, C3) and walnet shell (W1, W2, W3) biochar was demonstrated using maximum percent COD reduction. The results showed that the maximum COD reduction was 56% for C3 with a BET area of 48 m²/g and 62% for W3 with a BET area of 151 m²/g, achieved with a dosage of 1 g/50 mL and a mixing time of 60 min. Each biochar exhibited an alkaline nature and the electrostatic attraction, alongwith ion exchange mechanisms, which contributed to the adsorption of impurities in the simulated wastewater.

Keywords

Agro-based biochar, Slow pyrolysis, COD reduction, Batch scale adsorption, Brunauer Emmett Teller

References

  1. Kadhom, M., et al. 2020. Removal of dyes by agricultural waste. Sustain. Chem. Pharmacy. 16: 100259. DOI: 10.1016/j.scp.2020.100259 .
  2. Ahmed, M. J., B. H. Hameed and E. H. Hummadi. 2020. Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants. Carbohydrate polymers. 247: 116690. DOI: 10.1016/j.carbpol.2020.116 690.
  3. Amalina, F., et al. 2022. Biochar production techniques utilizing biomass waste-derived materials and environmental applications– A review. J. Hazard. Mater. Adv., 7: 100134. DOI: 10.1016/j.hazadv. 2022.100134.
  4. Hynes, N. R. J., et al. 2020. Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector-A comprehensive review. J. clean. prod., 272: 122636. DOI: 10.1016/j.jclepro.2020.122636.
  5. Amalina, F., et al. 2022. A review of eco-sustainable techniques for the removal of Rhodamine B dye utilizing biomass residue adsorbents. Physics Chem. Earth: Parts A/B/C. 128: 103267. DOI: 10.1 016/j.pce.2022.103267.
  6. Bagotia, N., A. K. Sharma and S. Kumar. 2021. A review on modified sugarcane bagasse biosorbent for removal of dyes. Chemosphere. 268: 129309. DOI: 10.1016/j.chemosphere.2020.129309.
  7. Krishnan, S., et al. 2021. Current technologies for recovery of metals from industrial wastes: An overview. Env. Tech. Innov., 22: 101525. DOI: 10.1016 /j.eti.2021.101525.
  8. Ullah, N., et al. 2022. Synthesis of activated carbon-surfactant modified montmorillonite clay-alginate composite membrane for Methylene Blue adsorption. Chemosphere. 309: 136623. DOI: 10.101 6/j.chemosphere.2022.136623.
  9. Nasrullah, A., et al. 2019. Mangosteen peel waste as a sustainable precursor for high surface area mesoporous activated carbon: Characterization and application for Methylene Blue removal. J. Clean. Prod., 211: 1190-1200. DOI: 10.1016/j.jclepro.20 18.11.094.
  10. Zayed, A. M., et al. 2023. Facile synthesis of eco-friendly activated carbon from leaves of sugarbeet waste as a superior non-conventional adsorbent for anionic and cationic dyes from aqueous solutions. Arabian J. Chem., 16(8): 104900. DOI: 10.1016/j. arabjc.2023.104900.
  11. Aguilar-Rosero, J., et al. 2022. Development and characterization of bioadsorbents derived from different agricultural wastes for water reclamation: A review. Appl. Sci., 12(5): 2740. DOI: 10.3390/app12052740.
  12. Liu, Y., et al. 2018. Impact of biochar amendment in agricultural soils on the sorption, desorption and degradation of pesticides: A review. Sci. total env., 645: 60-70. DOI: 10.1016/j.scitotenv.2018.07. 099.
  13. Ranga, S. V. and L. K. Sanghavi. 2017. Dye waste- water treatment using agrowaste: Green adsorption. Int. J. Innov. Res. Sci., Eng. Tech., 6(1): 14-18.
  14. Chudhary, Z., et al. 2020. Walnut (chapter 49). In Medicinal plants of South Asia: Novel sources for drug discovery. Elsevier. pp 671-684. DOI: 10.101 6/B978-0-08-102659-5.00049-5.
  15. Queirós, C. S., et al. 2020. Characterization of walnut, almond and pine nut shells regarding chemical composition and extract composition. Biomass Conversion Biorefinery. 10: 175-188. DOI: 10.1007/s13399-019-00424-2.
  16. Shah, A. J., B. Soni and S. K. Karmee. 2022. Application of cotton stalk biochar as a biosorbent for the removal of Malachite Green and its microwave-assisted regeneration. Energy Ecol. Env., 7(1): 88-96. DOI: 10.1007/s40974-021-00217-2.
  17. Escalante, J., et al. 2022. Pyrolysis of lignocellulosic, algal, plastic and other biomass wastes for biofuel production and circular bioeconomy: A revi-ew of thermogravimetric analysis (TGA) approach. Renew. Sustain. Energy Reviews. 169: 112914. DOI: 10.1016/j.rser.2022.112914.
  18. Allohverdi, T., et al. 2021. A review on current status of biochar uses in agriculture. Molecules. 26(18): 5584. DOI: 10.3390/molecules26185584.
  19. Yuan, T., et al. 2020. Comparison of biochars formation derived from fast and slow pyrolysis of walnut shell. Fuel. 261: 116450. DOI: 10.1016/j.fuel.2019.116450.
  20. ASTM D1762-84. 2021. Standard test method for chemical analysis of wood charcoal. ASTM International.
  21. Amaral, M.A.F., et al. 2023. Evaluation of the adsorbent potential of biochar obtained by pyrolysis to remove emerging contaminants. Brazilian J. Anal. Chem., 10(41): 80-89. doi: 10.30744/brjac.2179-3425.TN-31-2023.
  22. Aulia, A., F.S. Arsyad and A. Johan. 2019. Temperature carbonization effect on the quality of activated carbon based on rubber seed shell. J. Phys.: Conf. Ser., 1282: 012043. DOI: 10.1088/1742-6596/1282/1/012043.
  23. ASTM D4607-14. 2021. Standard test method for determination of iodine number of activated carbon. ASTM International.
  24. Prabu, P. and K. Raghu. 2017. Synthesis and characterization of cotton stalk activated carbon by chemical activation using H3PO4. Synthesis. 2(5): 93-97.
  25. Li, X., et al. 2020. Characterization and comparison of walnut shells-based activated carbons and their adsorptive properties. Adsorption Sci. Tech., 38(9-10): 450-463. DOI: 10.1177/02636174-209 46524.
  26. Pavia, D.L., G.M. Lampman and G.S. Kriz. 2001. Introduction to spectroscopy: A guide for students of organic chemistry (3rd edn.). Thomson Learning Inc., Boston, USA.
  27. APHA. 2012. Standard methods for the examination of water and wastewater (22nd edn). American Public Health Association.
  28. Chun, Y., et al. 2004. Compositions and sorptive properties of crop residue-derived chars. Env. sci. tech., 38(17): 4649-4655. DOI: 10.1177/02636 17420946524.
  29. Kloss, S., et al. 2012. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J. env. quality. 41(4): 990-1000. DOI:10.2134/jeq2011.0070.
  30. Tripathi, N. 2013. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. J. Appl.Chem., 5: 91-108.
  31. Yu, J., et al. 2014. Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci. Total Env., 482: 241-251. DOI: 10.1016/j.scitot env.2014.02.129.
  32. Domingues, E., et al. 2023. Low-cost materials for swine wastewater treatment using adsorption and Fenton’s process. Env. Sci. Poll. Res., 1-11. DOI: 10.1007/s11356-023-29677-1.
  33. Cao, X. and W. Harris. 2010. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. tech., 101(14): 5222-5228. DOI: 10.1016/j.biortech.2010.02.052.
  34. Chen, T., et al. 2014. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour. tech., 164: 47-54. DOI: 10.1016/j.biortech.2014.04.048.
  35. Zhao, X., X. Wang and T. Lou. 2021. Preparation of fibrous chitosan/sodium alginate composite foams for the adsorption of cationic and anionic dyes. J. Hazard. Mater., 403: 124054. DOI: 10.10 16/j.jhazmat.2020.124054.
  36. Keiluweit, M., et al. 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Env. sci. tech., 44(4): 1247-1253. DOI: 10.1021/es9031419.
  37. Guilhen, S.N., et al. 2022. Role of point of zero charge in the adsorption of cationic textile dye on standard biochars from aqueous solutions: Selection criteria and performance assessment. Recent Progress Mater., 4(2): 1-30. DOI: 10.21926/rpm.2 202010.
  38. Ndoun, M.C., et al. 2023. Physico-chemical characterization of biochar derived from the pyrolysis of cotton gin waste and walnut shells. J. ASABE. 66(5): 1163-1174. doi: 10.13031/ja.15489
  39. Lu, K., et al. 2019. Adsorption behaviour and mechanism of Fe-Mn binary oxide nanoparticles: Adsorption of Methylene Blue. J. colloid interface sci., 539: 553-562. DOI: 10.1016/j.jcis.2018.12.094.
  40. Liu, L., et al. 2022. Metolachlor adsorption using walnut shell biochar modified by soil minerals. Env. Poll., 308: 119610. DOI: 10.1016/j.envpol. 2022.11 9610.
  41. Georgieva, V. G., L. Gonsalvesh and M.P. Tavlieva. 2020. Thermodynamics and kinetics of the removal of nickel (II) ions from aqueous solutions by biochar adsorbent made from agro-waste walnut shells. J. Molec. Liquids. 312: 112788. DOI: 10.1016/j.molliq. 2020.112788.
  42. Guerrero, M., et al. 2008. Characterization of biomass chars formed under different devolatilization conditions: differences between rice husk and eucalyptus. Energy Fuels. 22(2): 1275-1284. DOI: 10.1021/ef7005589.
  43. Alfattani, R., et al. 2021. Biochar characterization produced from walnut shell biomass through slow pyrolysis: Sustainable for soil amendment and an alternate bio-fuel. Energies. 15(1): 1. DOI: 10.3390/en15010001.
  44. Zhang, J., J. Liu and R. Liu. 2015. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour. Tech., 176: 288-291. DOI: 10.10 16/j.biortech.2014.11.011.
  45. Rehrah, D., et al. 2014. Production and characterization of biochars from agricultural byproducts for use in soil quality enhancement. J. anal. appl. pyrolysis. 108: 301-309. DOI: 10.1016/j.jaap.2014 .03.008.
  46. Assila, O., et al. 2020. Adsorption studies on the removal of textile effluent over two natural eco-friendly adsorbents. J. Chem., DOI: 10.1155/2020/6457825.
  47. Bazrafshan, E., F. K. Mostafapour and A. H. Mahvi. 2012. Phenol removal from aqueous solutions using pistachio-nut shell ash as a low-cost adsorbent. Fresenius Env. Bull., 21(10): 2962-2968.
  48. Badawi, A. K., E. S. Bakhoum and K. Zaher. 2021. Sustainable evaluation of using nano zero-valent iron and activated carbon for real textile effluent reme-diation. Arabian J. Sci. Eng., 46(11): 10365-10380. DOI: 10.1007/s13369-021-05349-5.
  49. Gonawala, K. H. and M. J. Mehta. 2014. Removal of colour from different dye wastewater by using ferric oxide as an adsorbent. Int. J. Eng. Res. Appl., 4(5): 102-109.
  50. GilPavas, E., I. Dobrosz-Gómez and M. Á. Gómez-García. 2017. Coagulation-flocculation sequential with Fenton or photo-Fenton processes as an alternative for the industrial textile wastewater treatment. J. env. manage., 191:189-197. DOI: 10.1016 /j.jenvman.2017.01.015.
  51. Fazal, T., et al. 2021. Integrating bioremediation of textile wastewater with biodiesel production using microalgae (Chlorella vulgaris). Chemosphere. 281: 130758. DOI: 10.1016/j.chemosphere.2021.130 758.
  52. Uddin, M. K. and A. Nasar. 2020. Walnut shell powder as a low-cost adsorbent for Methylene Blue dye: Isotherm, kinetics, thermodynamic, desorption and response surface methodology examinations. Sci. Reports. 10(1): 7983. DOI: 10.1038/s41598-020-64745-3.
  53. Kilic, M.Y. 2020. A comparative treatability study for textile wastewater: Agricultural waste adsorbent versus activated carbon. Polish J. Env. Studies. 29(6): 4131-4137. DOI: 10.15244/pjoes/120 770.
  54. Badawi, A. K. and K. Zaher. 2021. Hybrid treatment system for real textile wastewater remedia-tion based on coagulation/flocculation, adsorption and filtration processes: Performance and economic evaluation. J. Water Process Eng., 40: 101963. DOI: 10.1016/j.jwpe.2021.101963.
  55. Kalengyo, R. B., et al. 2023. Utilizing orange peel waste biomass in textile wastewater treatment and its recyclability for dual biogas and biochar production: A techno-economic sustainable approach. Biomass Conversion Biorefinery. 14: 19875–19888. DOI: 10.1007/s13399-023-04111-1.
  56. Khalid, U. and M. A. Inam. 2024. The influence of pyrolysis temperature on the performance of cotton stalk biochar for hexavalent chromium removal from wastewater. Water air Soil Poll., 235(2): 114. DOI: 10.1007/s11270-024-06922-y.
  57. Gao, L., et al. 2021. Impacts of pyrolysis temperature on lead adsorption by cotton stalk-derived biochar and related mechanisms. J. Env. Chem. Eng., 9(4): 105602. DOI: 10.1016/j.jece.2021. 105602.
  58. Cheng, J., et al. 2021. The effect of pyrolysis temperature on the characteristics of biochar, pyroligneous acids and gas prepared from cotton stalk through a polygeneration process. Ind. Crops Prod., 170: 113690. DOI: 10.1016/j.indcrop.2021.113 690.
  59. Ndoun, M. C., et al. 2023. Fixed bed column experiments using cotton gin waste and walnut shells-derived biochar as low-cost solutions to removing pharmaceuticals from aqueous solutions. Chemosphere. 330: 138591. DOI: 10.1016/j.chemos-phere.2023.138591.
  60. Jinendra, U., et al. 2021. Adsorptive removal of Rhodamine B dye from aqueous solution by using graphene-based nickel nanocomposite. Heliyon. 7(4). DOI: 10.1016/j.heliyon.2021.e06851.
  61. Sadeghi, S., et al. 2021. Modified wheat straw-derived graphene for the removal of Erichrome Black T : Characterization, isotherm and kinetic studies. Env. Sci. Poll., 28: 3556-3565. DOI: 10.1007/s11 356-020-10647-w.