Impact of Climate Change on Agricultural Productivity in Hilly Region of Assam: A Panel Data Analysis

IJEP 45(5): 415-427 : Vol. 45 Issue. 5 (May 2025)

Saddam Hussain and Utpal Kumar De*

North-Eastern Hill University, Department of Economics, Shillong – 793 022, Meghalaya, India

Abstract

This paper examines the in fluence of both climatic and non-climatic factors on the yield of major crops in hilly regions of Assam during 1981-2022. Cobb Douglas’s production function approach has been utilized with panel data of hill districts for the purpose. This is because this method is more appropriate in comparison to other methods due to its flexibility and ease of handling different econometric techniques. Empirical results reveal the negative effect of changing rainfall on the yield of autumn and winter rice, mustard and sugarcane. However, minimum and maximum temperature have significant positive effects on winter rice; minimum temperature has a positive effect on the yield of summer rice and wheat but a negative influence on the yield of sugarcane. Humidity positively influences autumn and winter rice. Maximum wind speed positively influences the sugarcane yield, while minimum wind speed has a negative effect on wheat, rape and mustard, sugarcane. The cropping area has a favourable impact on several crops and chemical fertilizer is necessary to enhance the productivity of major crops. Overall, a mixed influence of changing climatic conditions and technological factors is observed in this hill agriculture that varies across crops,with varying altitudes, agro-climatic conditions and adaptation patterns of farmers.

Keywords

Climate effect, Agriculture, Crop yield, Panel data models

References

  1. Vesco, P., et al. 2021. Climate variability, crop and conflict: Exploring the impacts of spatial concentration in agricultural production. J. Peace Res., 58(1): 98-113. DOI: 10.1177/0022343320 9710 20.
  2. Chatzopoulos, T., et al. 2020. Climate extremes and agricultural commodity markets: A global economic analysis of regionally simulated events. Weather Climate Extremes. 27: 100193. DOI: 10.1 016/j.wace.2019.100193.
  3. Aryal, J. P., et al. 2020. Climate change and agriculture in South Asia: Adaptation options in smallholder production systems. Env. Develop. Sustain.22(6): 5045-5075. DOI: 10.1007/s10668-019-00414-4.
  4. Hall, N.M., et al. 2006. Effect of improved fallow on crop productivity, soil fertility and climate-forcing gas emissions in semi-arid conditions. Biol. fertility soils. 42: 224-230. DOI: 10.1007/s00374-005-0019-8.
  5. Adams, R. M., et al. 1998. Effects of global climate change on agriculture: an interpretative review. Climate res., 11(1): 19-30.
  6. Stokes, C. and M. Howden. 2010. Adapting agriculture to climate change: Preparing Australian agriculture, forestry and fisheries for the future. CSIRO publishing.
  7. Wunder, S., F. Noack and A. Angelsen. 2018. Climate, crops and forests: a pan-tropical analysis of household income generation. Env. Develop. Eco., 23(3): 279-297.
  8. Kurukulasuriya, P. and R.O. Mendelsohn. 2007. A Ricardian analysis of the impact of climate change on African cropland. World Bank policy research working paper (4305). World Bank.
  9. FAO. 2015. Regional overview of food insecurity Asia and the Pacific. Food and Agricultural Organizations, United Nations.
  10. Duong, P.B. and P.T. Thanh. 2019. Adoption and effects of modern rice varieties in Vietnam: Micro-econometric analysis of household surveys. Eco. Analysis Policy. 64: 282-292. DOI: 10.1016/j.eap. 2019.09.006.
  11. Khanal, U., et al. 2021. Smallholder farmers’ adaptation to climate change and its potential contribution to UN’s sustainable development goals of zero hunger and no poverty. J. Clean. Prod., 281: 124999.
  12. Balasubramanya, S. and D. Stifel. 2020. Water, agriculture and poverty in an era of climate change: Why do we know so little? Food Policy. 93: 101905. DOI: 10.1016/j.foodpol. 2020.101905.
  13. Rosenzweig, C. and M.L. Parry. 1994. Potential impact of climate change on world food supply. Nature. 367(6459): 133-138.
  14. Tang, K. and A. Hailu. 2020. Smallholder farms’ adaptation to the impacts of climate change: Evidence from China’s Loess plateau. Land Use Policy. 91: 104353. DOI : 10.1016/j.landusepol. 20 19.104353.
  15. Wheeler, T. and J. Von Braun. 2013. Climate change impacts on global food security. Sci., 341(6145): 508-513. DOI: 10.1126/science.1239402.
  16. Kaiser, N. and G. Squires. 1993. Mapping the dark matter with weak gravitational lensing. Astrophysical J., 404(2): 441-450.
  17. Rosenzweig, C. 1990. Crop response to climate change in the southern Great Plains: A simulation study. Professional Geographer. 42(1): 20-37.
  18. Wang, J., et al. 2009. The impact of climate change on China’s agriculture. Agric. Eco., 40(3): 323-337. DOI: 10.1111/j.1574-0862.2009.00379.x.
  19. Chang, C.C. 2002. The potential impact of climate change on Taiwan’s agriculture. Agric. Eco., 27(1): 51-64.
  20. Lansigan, F. P., W.L. De Los Santos and J.O. Coladilla. 2000. Agronomic impacts of climate variability on rice production in the Philippines. Agric. Ecosystems Env.,82(1-3): 129-137.
  21. Moges, D.M. and H.G. Bhat. 2021. Climate change and its implications for rainfed agriculture in Ethiopia. j. Water Climate Change. 12(4): 1229-1244.
  22. Song, Y., et al. 2022. The impact of climate change on China’s agricultural green total factor productivity. Tech. Forecasting Social Change. 185: 122054. DOI: 10.1016/j.techfore.2022.122054.
  23. Evangelista, P., N. Young and J. Burnett. 2013. How will climate change spatially affect agriculture production in Ethiopia? Case studies of important cereal crops. Climatic change. 119: 855-873. DOI: 10.1007/s10584-013-0776-6.
  24. IPCC. 2014. Summary for policymakers. In Climate change 2014: Impacts, adaptation and vulnerability. Part A: Global and sectoral aspects. Ed C.B. Field et al. Contribution of working group II to the fifth assessment report of the intergovernmental panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom.
  25. FAO. 2016. Climate change and food security: Risks and responses. Food and agriculture Organization, United Nations.
  26. IPCC. 2017. Enhancing the contribution and role of practitioner knowledge in the intergovernmental panel on Climate Change.
  27. Parry, M. L., et al. 2004. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Env. Change. 14(1): 53-67.
  28. Lin, G. and Y. Lu. 2019. Effects of climate change on agricultural total factor productivity and its countermeasures—A case study of winter wheat. Rural Economy. 6: 7.
  29. Nechifor, V. and M. Winning. 2019. Global crop output and irrigation water requirements under a changing climate. Heliyon. 5(3): 1-27. DOI: 10.101 6/j.heliyon.2019.e01266
  30. Suresh, K., et al. 2021. An economic analysis of agricultural adaptation to climate change impacts in Sri Lanka: An endogenous switching regression analysis. Land Use Policy. 109: 105601.
  31. Gao, M. 2018. Reestimation of agricultural productivity under climate change. China Soft Sci. Manage., 9: 26–39.
  32. Jabal, Z. K., T.S. Khayyun and I.A. Alwan. 2022. Impact of climate change on crops productivity using MODIS-NDVI time series. Civil Eng. J., 8(6): 1136-1156.
  33. Yin, C., et al. 2016. Climate change, science and technology stock and agricultural productivity growth. China Rural Eco., 5: 16-28.
  34. Yi, F., T. Zhou and X. Chen. 2021. Climate change, agricultural research investment and agricultural total factor productivity. J. Najing Agric. University (Social Sci. Edu.). 21(4): 155-167.
  35. Mondal, P., et al. 2015. Sensitivity of crop cover to climate variability: Insights from two Indian agro-ecoregions. J. Env. Manage., 148: 21-30. DOI: 10.1 016/j.jenvman.2014.02.026.
  36. Mall, R.K., et al. 2006. Impact of climate change on Indian agriculture: A review. Climatic change. 78: 445-478.
  37. De, U.K. 2017. Changing weather pattern in sub-Himalayan northeast India and interrelations among the weather variables. in Global change, ecosystems, sustainability. Ed P. Mukhopadhyay, N. Nawn and K. Das. Sage Publication. pp 101-115.
  38. De, U.K. and K. Bodosa. 2017. Adaptability of farmers in Assam towards extreme climate effects: An empirical investigation. in Inequality, poverty and development in India: Focus on the north-eastern region. Ed U.K. De, M. Pal and P. Bharati. Springer Nature, Singapore. pp 465-500.
  39. Singha, C. 2019. Impact of the adoption of vegetative soil conservation measures on farm profit, revenue and variable cost in Darjeeling district, India. Env. Develop. Eco., 24(5): 529-553.
  40. Mandal, R. and P. Singha. 2020. Impact of climate change on average yields and their variability of the principal crops in Assam. Indian J. Agric. Eco., 75(3): 305-316.
  41. Nath, H. K. and R. Mandal. 2018. Heterogeneous climatic impacts on agricultural production: evidence from rice yield in Assam, India. Asian j. agric. develop.,15(1): 23-42.
  42. Census of India. 2011. Office of the Registrar General and Census Commissioner. Ministry of Home Affairs, Government of India, New Delhi.
  43. Birthal, P.S. 2010. Unlocking the potential of agriculture in northeastern hill region of India. Indian J. Agric. Eco., 65(3): 331-343.
  44. De, U.K. and K. Bodosa. 2017. Adaptability of farmers in Assam towards extreme climate effects: An empirical investigation. In Inequality, poverty and development in India: Focus on the northeastern region. Ed U.K. De, M. Pal and P. Bharati. Springer Nature, Singapore. pp 465-500.
  45. Nath, K.K. and R.L. Deka. 2010. Climate change and agriculture over Assam. In Climate change and agriculture over India. Ed G.G.S.N. Rao, G.S.L.H.V Rao, V.U.M. Prasada Rao. Eastern Economy Editions.
  46. Begum, A. and R. Mahanta. 2017. Adaptation to climate change and factors affecting it in Assam. Indian J. Agric. Eco., 27(3): 446-455.
  47. Kim, M.K. and A. Pang. 2009. Climate change impact on rice yield and production risk. J. Rural Develop. Nongchon-Gyeongje. 32(2): 17-29.
  48. Poudel, M. P., S. E. Chen and W.C. Huang. 2014. Climate influence on rice, maize and wheat yields and yield variability in Nepal. J. Agric. Sci. Tech., B. 4(1B): 38.
  49. Cabas, J., A. Weersink and E. Olale. 2010. Crop yield response to economic, site and climatic variables. Climatic change. 101(3): 599-616. DOI: 10.1007/s10584-009-9754-4.
  50. Maddala, G.S. and S. Wu. 1999. A comparative study of unit root tests with panel data and a new simple test. Oxford Bulletin Eco. statistics. 61(S1): 631-652.
  51. Baltagi, B. H., E. Bratberg and T.H. Holmås. 2005. A panel data study of physicians’ labor supply: The case of Norway. Health Eco., 14(10): 1035-1045.
  52. Singh, A.K. and S.N. Ashraf. 2020. Association of entrepreneurship ecosystem with economic growth in selected countries: An empirical exploration. J. Entrepreneurship, Business Eco., 8(2): 36-92.
  53. Singh, A.K., K.G.S. Narayanan and P. Sharma. 2019. Measurement of technical efficiency of climatic and non-climatic factors in sugarcane farming in Indian states: Use of stochastic frontier production function approach. Climate Change. 5(19): 150-166.
  54. Mugagga, F., A. Nimusiima and J. Elepu. 2020. An appraisal of adaptation measures to climate variability by smallholder Irish potato farmers in south western Uganda. American J. Cliamte Change. 9(3): 228-242. DOI: 10.4236/ajcc.2020.93015.
  55. Gupta, A. 2016. Climate change and Kyoto protocol: An overview (chapter 1). InHandbook of environmental and sustainable finance. Academic Press. pp 3-23.
  56. Kumar, A., P. Sharma and S.K. Ambrammal. 2015. Climatic effects on sugarcane productivity in India: A stochastic production function application. Int. J. Eco. Business Res., 10(2): 179-203. DOI: 10.15 04/IJEBR.2015.070984.
  57. Kumar, A., P. Sharma and S.K. Ambrammal. 2014. Climatic effects on food grain productivity in India. J. studies dynamics change. 1(1): 38-48.
  58. Hossain, M.M., A.K. Majumder and T. Basak. 2012. An application of non–linear Cobb-Douglas production function to selected manufacturing industries in Bangladesh. Open J. Statistics. 2(4): 460. DOI: 10.4236/ojs.2012.24058.
  59. Uddin, M.M.M., et al. 2024. Moderating impact of FDI on the growth-environment nexus in the pre-Covid-19 eras. Res. Int. Business Finance. 67: 102114. DOI: 10.1016/j.ribaf.2023.102114.
  60. Sharif, T., J. Ahmed and J. Abdullah. 2013. Human resource development and economic growth in Bangladesh: An econometric analysis. European J. Business Manage., 5(7): 133-144.
  61. Sharif, T., M.M. Uddin and C. Alexiou. 2022. Testing the moderating role of trade openness on the environmental Kuznets curve hypothesis: A novel approach. Annals Operations Res., 345: 597–635. DOI: 10.1007/s10479-021-04501-6.
  62. Mohapatra, S., et al. 2024. Unveiling the spatial dynamics of climate impact on rice yield in India. Eco. Analysis Policy. 83: 922-945. DOI: 10.1016/j.eap.2024.07.02.
  63. Chandiposha, M. 2013. Potential impact of climate change in sugarcane and mitigation strategies in Zimbabwe. African J. Agric. Res., 8: 2814-
    2818.
  64. Samui, R.P., et al. 2014. A critical evaluation of sugarcane yield variation as influenced by climatic parameters in Uttar Pradesh and Maharashtra states of India. Times J. Agric. Vet. Sci., 2: 63-69.
  65. Ramulu, M. 1996. Supply response of sugarcane in Andhra Pradesh. Finance India. 10(1): 116-122.
  66. Rosenzweig, C. and D. Hillel. 1995. Potential impacts of climate change on agriculture and food supply. Consequences. 1(2): 23-32.
  67. Magrin, G.O., M. I. Travasso and G. R. Rodríguez. 2005. Changes in climate and crop production during the 20th century in Argentina. Climatic change. 72: 229-249.
  68. Rama Rao, C.A., et al. 2019. Yield vulnerability of sorghum and pearl millet to climate change in India. Indian J. Agric. Eco., 74(3): 350-362.
  69. Srivastava, A. K. and M.K. Rai. 2012. Sugarcane production: Impact of climate change and its mitigation. Biodiversitas J. Biol. Diversity. 13(4): 214-227.
  70. Amin, M. R., J. Zhang and M. Yang. 2015. Effects of climate change on the yield and cropping area of major food crops: A case of Bangladesh. Sustain., 7(1): 898-915.
  71. Singh, D., S. Srivastava and G.D.R. Guru. 2020. Effect of climate change on sugarcane crop: A review. J. Pharmacognosy Phytochem.,9(6S): 255-261.
  72. Zhang, P., J. Zhang and M. Chen. 2017. Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation. J. Env. Eco. Manage., 83: 8-31.
  73. Mandal, R. and P. Singha. 2020. Impact of climate change on average yields and their variability of the principal crops in Assam. Indian J. Agric. Eco., 75(3): 305-316.
  74. Rahman, M. R. and H. Lateh. 2017. Climate change in Bangladesh: a spatio-temporal analysis and simulation of recent temperature and rainfall data using GIS and time series analysis model. Theoretical appl. climatol., 128: 27-41.