Supplementary Cementitious Materials in Low Carbon Cementitious Binders and Concrete Composites: Fresh and Hardened Properties

IJEP 42(13): 1564-1571 : Vol. 42 Issue. 13 (Conference 2022)

Anurag1, R. Kumar1*, S. Goyal2 and Sumedha2

1. CSIR-Central Building Research Institute, Roorkee- 247 667, Uttarakhand, India
2. Thapar Institute of Engineering and Technology, Patiala- 147 004, Punjab, India

Abstract

Smart problems require smart solutions. This concept is applicable in the construction field. As the emission of carbon dioxide and other greenhouse gases increases due to cement production, it becomes necessary to reduce the carbon footprint by replacing cement with other materials. Many industries are producing waste and dumping it on open land, thus creating pollution. So, a smart solution is to utilize that waste in construction fields. These wastes include fly ash (FA) from the thermal power plant, ground granulated blast furnace slag (GGBFS) from the steel industry, low-grade limestone slurry from the cutting and polishing of stones, silica fume (SF) from the ferrosilicon industry and so on. These wastes are called supplementary cementitious materials (SCMs) as they possess pozzolanic properties and are effective in partially replacing the cement. By using these SCMs, two solutions can be achieved: one is reducing harmful gases and the other is reducing land pollution. By incorporating SCMs into mortar or concrete, properties (fresh and hardened) can be enhanced. In this review, a study on the effect of a few SCMs on physical, chemical and mechanical properties has been done.

Keywords

Silica fume, Supplementary cementitious materials

References

  1. Aïtcin, P.C. 1998. High performance concrete (1st edn). CRC press, London. DOI: 10.4324/9780203475034.
  2. Mehta, P.K. and P.J. Monteiro. 2014. Concrete: Microstructure, properties and materials (4th edn). McGraw-Hill Education.
  3. Uchikawa, H. and T. Okamura. 1993. Binary and ternary components blended cement. In Mineral Additives in Cement and Concrete. Ed S.L. Sarkar. ABI Books Private, New Delhi, India.
  4. Bagel, L. 1998. Strength and pore structure of ternary blended cement mortars containing blast furnace slag and silica fume. Cement Concrete Res., 28(7): 1011-1022.
  5. Reynolds, S. 2009. The future of ferrous slag, market forecasts to 2020. Pira International Ltd., Leatherhead, UK.
  6. Mohan, V.M. 2006. Reducing CO2emissions: The role of fly ash and other supplementary cementitious materials. Concrete International.
  7. Garside, M. 2020. Major countries in worldwide cement production 2015-2019. Statista International.
  8. Tan, Y., et al. 2020. Properties and microstructure of basic magnesium sulfate cement: Influence of silica fume. Constr. Build. Mater., 266: 121076
  9. Adil, G., J.T. Kevern and D. Mann. 2020. Influence of silica fume on mechanical and durability of pervious concrete. Constr. Build. Mater., 247: 118453.
  10. Billong, N., J. Oti and J. Kinuthia. 2020. Using silica fume-based activator in sustainable geopolymer binder for building application. Constr. Build. Mater., 275: 122177.
  11. Patel, D., et al. 2019. Effective utilization of waste glass powder as the substitution of cement in making paste and mortar. Constr. Build. Mater., 199: 406-415
  12. Mehta, A. and D.K. Ashish. 2020. Silica fume and waste glass in cement concrete production: A review. J. Building Eng., 29: 100888
  13. Topcu, I.B. 2013. High-volume ground granulated blast furnace slag (GGBFS) concrete. In Eco-Efficient Concrete. Woodhead Publishing. pp. 218-240.
  14. Yurt, Ü. 2020. High performance cementless composites from alkali-activated GGBFS. Constr. Build. Mater., 264: 120222
  15. Aghaeipour, A. and M. Madhkhan. 2017. Effect of ground granulated blast furnace slag (GGBFS) on RCCP durability. Constr. Build. Mater., 141: 533-541.
  16. Siddique, R. and R. Bennacer. 2012. Use of iron and steel industry by-product (GGBS) in cement paste and mortar. Res. Conservation Recycling. 69: 29-34.
  17. Bouzón, N., et al. 2014. Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Mater. Letters. 115: 72-74.
  18. Stroeven, P., D.D. Bui and E. Sabuni. 1999. Ash of vegetable waste used for economic production of low to high strength hydraulic binders. Fuel. 78(2): 153-159.
  19. Habeeb, G.A. and H.B. Mahmud. 2010. Study on properties of rice husk ash and its use as cement replacement material. Mater. Res., 13(2): 185-190.
  20. Della, V.P., I. Kühn and D. Hotza. 2002. Rice husk ash as an alternate source for active silica production. Mater. Letters. 57(4): 818-821.
  21. Farooque, K.N., et al. 2009. Characterization and utilization of rice husk ash (RHA) from rice mill of Bangladesh. Bangladesh J. Sci. Ind. Res., 44(2): 157-162.
  22. Cizer, Ö., et al. 2006. Carbonation and hydration of calcium hydroxide and calcium silicate binders with rice husk ash. 2nd International RILEM Symposium. Rilem Publications SARL, France.
  23. Bouzoubaa, N. and B. Fournier. 2001. Concrete incorporating rice husk ash: Compressive strength and chloride-ion durability. Materials Technology Laboratory Report MTL. 5: 17.
  24. Vance, K., et al. 2013. Hydration and strength development in ternary Portland cement blends containing limestone and fly ash or Met-akaolin. Cement Concrete Composites. 39: 93-103.
  25. Sun, Y., K.Q. Wang and H.S. Lee. 2020. Prediction of compressive strength development for blended cement mortar considering fly ash fineness and replacement ratio. Constr. Build. Mater., 121532.
  26. Abdel-Gawwad, H.A., et al. 2020. Evaluating the performance of high-volume fly ash-blended-cement mortar individually containing nano-and ultrafine micro-magnesia. J. Build. Eng., 102129.
  27. Pathak, N. and R. Siddique. 2012. Properties of self-compacting concrete containing fly ash subjected to elevated temperatures. Constr. Build. Mater.,30: 274-280.
  28. ASTM C618-19. Standard specification for coal fly ash and raw or calcined natural Pozzolan for use in concrete. ASTM International, West Conshohocken.
  29. Mironyuk, I., et al. 2019. Effect of surface-modified fly ash on compressive strength of cement mortar. Mater. Today. DOI:10.1016/j.matpr. 2019.10.016.
  30. Supit, S.W., F.U. Shaikh and P.K. Sarker. 2014. Effect of ultrafine fly ash on mechanical properties of high-volume fly ash mortar. Constr. Build. Mater.,51: 278-286.
  31. Rao, G.A. 2003. Investigations on the performance of silica fume-incorporated cement pastes and mortars. Cement Concrete Res.,33(11): 1765-1770.
  32. Sezer, G.Ý. 2012. Compressive strength and sulfate resistance of limestone and/or silica fume mortars. Constr. Build. Mater.,26(1): 613-618.
  33. Chen, J.J., et al. 2020. Ternary blending with metakaolin and silica fume to improve packing density and performance of binder paste. Constr. Build. Mater., 252: 119031.
  34. Ali, K., et al. 2021. Effect of waste electronic plastic and silica fume on mechanical properties and thermal performance of concrete. Constr. Build. Mater., 285: 122952.
  35. Yingliang, Z., et al., 2020. Effect of superfine blast furnace slags on the binary cement containing high-volume fly ash. Powder Tech., 375: 539-548.
  36. Choi, Y. C. and B. Park. 2019. Enhanced autogenous healing of ground granulated blast furnace slag blended cements and mortars. J. Mater. Res. Tech., 8(4): 3443-3452.
  37. Li, Z. and Z. Ding. 2003. Property improvement of Portland cement by incorporating by metakaolin and slag. Cement Concrete Res., 33(4): 579-584. DOI:10.1016/S0008-8846(02)01025-6.
  38. Kulkarni, M.S., et al. 2014. Effect of rice husk ash on properties of concrete. J. Civil Eng. Env. Tech., 1(1): 26-29.
  39. Srinivasreddy, A.B., T.J. McCarthy and E. Lume. 2013. Effect of rice husk ash on workability and strength of concrete. Faculty of Engineering and Information Sciences – Papers: Part A. 2004.
  40. Calica Jr, M.G. 2008. Influence of rice husk ash as supplementary material in cement paste and concrete. NLR J., 2: 80-92.
  41. Fapohunda, C., B. Akinbile and A. Shittu. 2017. Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement-A review. Int. J. Sustainable Built Env., 6(2): 675-692.
  42. Mehta, P. K. 1992. Rice hush ash-A unique supplementary cementing material. Proceedings of the International Symposium on Advances in concrete technology, Athens, Greece. pp 407-430.
  43. Kwan, A.K.H. and J.J. Chen. 2013. Adding fly ash microsphere to improve packing density, flowability and strength of cement paste. Powder Tech., 234: 19-25.
  44. Yuan, R.Z., S.X. Jin and J.C. Qian. 1982. Effects of fly ash on rheology of fresh cement paste. Mater. Res. Society Symposium. Proceedings. pp 182- 191.
  45. Swamy, R.N. 1986. Cement replacement materials (vol. 3). Surrey University Press, Sheffield.
  46. Zhu, J., et al. 2012. Effect of particle size of blast furnace slag on properties of Portland cem-ent. Procedia Eng., 27: 231-236.
  47. Heikal, M., et al. 2013. Characteristics of blended cements containing nano-silica. HBRC J., 9(3): 243-255.
  48. Wainwright, P.J. and H. Ait-Aider. 1995. The influence of cement source and slag additions on the bleeding of concrete. Cement Concrete Res., 25(7): 1445-1456.
  49. Luther, M.D., et al. 1994. Scaling resistance of ground granulated blast furnace slag (GGBFS) concretes. Durability of Concretes, SP-145 (edn.). Proceedings of the 3rd International Conference. pp 47-64.
  50. Malhotra, V.M. 1986. Comparative evaluation of three different granulated slags in concrete. Report MSL. 187-50.
  51. Marthong, C. 2012. Effect of rice husk ash (RHA) as partial replacement of cement on concrete properties. Int. J. Eng. Res. Tech., 1(6): 1-9.
  52. El-Dakroury, A. and M.S. Gasser. 2008. Rice husk ash (RHA) as cement admixture for immobilization of liquid radioactive waste at different temperatures. J. Nuclear Mater., 381(3): 271-277.
  53. Rashid, M.H., M.K.A. Molla and T.U. Ahmed. 2010. Durability of mortar in presence of rice husk ash. Pan. 100(41.5): 493-5.
  54. Chanu, N.M. and T.K. Devi. 2013. Contribution of rice husk ash to the properties of cement mortar and concrete. Int. J. Eng. Res. Tech., 2(2).
  55. Zunino, F., D.P. Bentz and J. Castro. 2018. Reducing setting time of blended cement paste containing high-SO3fly ash (HSFA) using chemical/physical accelerators and by fly ash pre-washing. Cement Concrete Composites. 90: 14-26.
  56. Ramakrishnan, V., et al. 1981. Performance characteristics of concretes containing fly ash. In Proceedings of the symposium on fly ash incorporation in hydrated cement system. Ed Material Research Society, Boston. pp 233-243.
  57. Rodway, L.E. and W.M. Fedirko. 1989. Super plasticized high volume fly ash structural concrete. In Proceedings of the Third International Conference on the use of fly ash, silica fume, slag and natural Pozzolans in concrete, Trondheim, Norway. pp 98-112.
  58. Yajun, J. and J.H. Cahyadi. 2003. Effects of densified silica fume on microstructure and compressive strength of blended cement pastes. Cement Concrete Res., 33(10): 1543-1548.
  59. Jeong, Y., et al. 2020. Acceleration of cement hydration from supplementary cementitious materials: Performance comparison between silica fume and hydrophobic silica. Cement Concrete Composites. 112: 103688.
  60. Gupta, S. 2016. Effect of content and fineness of slag as high-volume cement replacement on strength and durability of ultra-high-performance mortar. J. Build. Mater. Structures. 3(2): 43-54.
  61. Majhi, R.K., A.N. Nayak and B.B. Mukharjee. 2018. Development of sustainable concrete using recyc-led coarse aggregate and ground granulated blast furnace slag. Constr. Build. Mater., 159: 417-430.
  62. Islam, M.M., et al. 2011. Strength behavior of mortar using slag as partial replacement of cement. MIST Int. J. Sci. Tech., 3.
  63. Ozturk, M., et al. 2020. Mechanical and electromagnetic performance of cement-based composites containing different replacement levels of ground granulated blast furnace slag, fly ash, silica fume and rice husk ash. Cement Concrete Res., 136: 106177.
  64. Jiang, W., et al. 2020. Mechanical and hydration properties of low clinker cement containing high volume superfine blast furnace slag and nano silica. Constr. Build. Mater., 238: 117683
  65. Anwar Hossain, K.M. 2011. Stabilized soils incorporating combinations of rice husk ash and cement kiln dust. J. Mater. Civil Eng., 23(9): 1320-1327.
  66. De Sensale, G.R. 2006. Strength development of concrete with rice-husk ash. Cement Concrete Composites. 28(2): 158-160.
  67. Chindaprasirt, P., et al. 2007. Sulphate resistance of blended cements containing fly ash and rice husk ash. Constr. Build. Mater., 21(6): 1356-1361.
  68. Hsu, S., M. Chi and R. Huang. 2018. Effect of fineness and replacement ratio of ground fly ash on properties of blended cement mortar. Constr. Build. Mater., 176: 250-258.
  69. Chindaprasirt, P., S. Homwuttiwong and V. Sirivivatnanon. 2004. Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar. Cement Concrete Res., 34(7): 1087-1092.
  70. Anurag and R. Kumar. 2022. Optimization of clinker factor for low carbon penta-blended cement mortar via Box-Behnken design of response surface methodology. In Recent advances in structural engineering and construction management. pp 577-596.
  71. Anurag, et al. 2021. A comprehensive study on the influence of supplementary cementitious materials on physico-mechanical, microstructural and durability properties of low carbon cement composites. Powder Tech., 394: 645-668.
  72. Kumar, R., et al. 2022. Improvement of mechanical and microstructure properties of modified fly ash blended low carbon cement with hydroxy propyl methyl cellulose polymer. Iranian J. Sci. Tech. Trans. Civil Eng., 46:4219-4232.
  73. Tomar, P., et al. 2022. Improvement in hygroscopic property of Macro-defect free cement modified with Hypromellose/ potassium methyl siliconate copolymer and pulverized fly ash. J. Thermal Analysis Calorimetry. 147(5-7):28-34.
  74. Hou, P., et al. 2019. Comparison study on the sulfate attack resistivity of cement-based materials modified with nanoSiO2and normal SCMs: Pore structure and phase composition. Constr. Build. Mater., 228: 116764.
  75. Kumar, R.2022. Influence on hydration and microstructural properties of low carbon cementitious binder modified with water soluble polymer and fly ash. In Recent advances in materials, mechanics and structures. pp 1-12.
  76. Srivastava, A., R. Kumar and R. Lakhani. 2021. Low energy eco-cementitious binders as an alternative to ordinary Portland cement. In Smart materials, technologies and devices: Applications of industry 4.0. Ed C.M. Hussain, P. Di Sia. Springer Nature, Switzerland.
  77. Kumar, R. 2021. Effects of high volume dolomite sludge on the properties of eco-efficient lightweight concrete: Microstructure, statistical modeling, multi-attribute optimization through derringer’s desirability function and life cycle assessment. J. Cleaner Production. 307: 127107.
  78. Kumar, R. 2020. Modified mix design and statistical modelling of lightweight concrete with high volume micro fines waste additive via the Box-Behnken design approach. Cement Concrete Composites. 113: 103706.
  79. Kumar, R., R. Lakhani and P. Tomar. 2018. A simple novel mix design method and properties assessment of foamed concretes with limestone slurry waste. J. Cleaner Production. 171: 1650-1663.