Influence of Serratia marcescens on Carbon Steel Corrosion in Various Biodiesel Concentrations

IJEP 42(14): 1677-1685 : Vol. 42 Issue. 14 (Conference 2022)

Vivi A. Fardilah1, Yustina M. Pusparizkita2*, Wolfgang W. Schmahl3, Tjandra Setiadi4,5, Bork Ilsemann6, Mike Reich6, Hary Devianto4, Ardiyan Harimawan4 and Athanasius P. Bayuseno1*

1. Diponegoro University, Department of Mechanical Engineering, Faculty of Engineering,Tembalang 50275, Semarang, Central Java, Indonesia
2. Diponegoro University, Department of Environmental Engineering, Faculty of Engineering, Tembalang 50275, Semarang, Central Java, Indonesia
3. Ludwig Maximilian University Munich, Department of Earth and Environmental Sciences, Theresienstrasse 41, Munich 80333, Germany
4. Institut Teknologi Bandung, Department of Chemical Engineering, Faculty of Industrial Technology, Labtek X Jl. Ganesha, Bandung 40132, Indonesia
5. Bandung Institute of Technology, Center for Environmental Studies (PSLH), Jl. Sangkuriang 42 A, Bandung 40135, Indonesia
6. Ludwig Maximilian University of Munich, Paleontology and Geobiology, Department of Earth and Environmental Sciences, Richard-Wagner-Str. 10, Munich 80333, Germany


Biodiesel is a renewable fuel derived from a mixture of hydrocarbons (diesel oil) with fatty acid methyl ester (FAME). However, its use as fuel sometimes causes problems since biodiesel is hygroscopic and can act as a carbon source for the metabolism of micro-organisms that cause steel corrosion. One species of micro-organism-induced corrosion (MIC) is Serratia marcescens. This study observed carbon steel ST-37 corrosion in the biodiesel mixture (B15, B20, B30) and contamination of S. marcescens. The effect of biodiesel concentration and MIC was investigated by electron impedance spectroscopy (EIS), scanning electron microscope (SEM) and digital microscope. The results showed that S. marcescens could form biofilm on carbon steel surfaces at various concentrations of biodiesel as medium. The phenomenon of MIC involvement was illustrated through the electrical equivalent circuit. Biofilm growth, pit depth and corrosion area were influenced by biodiesel concentration. The consequence of pitting corrosion affected metal surface roughness and strength.


Corrosion, Pit, Biodiesel, Biofilm, Steel


  1. Bora, P., D.P. Gupta and K.S. Durbha. 2020. Sewage sludge to bio-fuel: A review on the sustainable approach of transforming sewage waste to alternative fuel. Fuel. 259: 116262. doi: 10.1016/J.FU EL.2019.116262.
  2. Knothe, G. and L.F. Razon. 2017. Biodiesel fuel. Prog. Energy Combust. Sci., 58: 36–59. doi: 10.10 16/J.PECS.2016.08.001.
  3. Qi, D.H. and C.F. Lee. 2014. Influence of soybean biodiesel content on basic properties of biodiesel-diesel blends. J. Taiwan Inst. Chem. Eng., 45(2): 504–507. doi: 10.1016/J.JTICE.2013. 06.021.
  4. Chandran, D. 2020. Compatibility of diesel engine materials with biodiesel fuel. Renew. Energy. 147: 89-99. doi: 10.1016/J.RENENE.2019.08.040.
  5. Fazal, M.A., A.S.M.A. Haseeb and H.H. Masjuki. 2013. Corrosion mechanism of copper in palm biodiesel. Corrosion Sci., 67:50-59. doi: 10.1016/j.corsci.2012. 10.006.
  6. Jin, D., et al. 2015. Corrosion behaviour of ASTM 1045 mild steel in palm biodiesel. Renew. Energy. 81:457-463. doi: 10.1016/j.renene.2015.03.022.
  7. Fazal, M.A., et al. 2018. Sustainability of additive-doped biodiesel: Analysis of its aggressiveness toward metal corrosion. J. Clean. Prod., 181: 508–516. doi: 10.1016/J.JCLEPRO.2018.01.248.
  8. Cardeño, F., et al. 2020. Reconsideration of regulated contamination limits to improve filterability of biodiesel and blends with diesel fuels. Renew. Energy. 159:1243–1251. doi: 10.1016/J.RENENE. 2020.06.079.
  9. Sundus, F., M.A. Fazal and H.H. Masjuki. 2017. Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties. Renew. Sustain. Energy Rev., 70 : 399–412. doi: 10.1016/J.RSER.2016.11.217.
  10. Lou, Y., et al. 2021. Microbiologically influenced corrosion inhibition mechanisms in corrosion protection: A review. Bioelectrochem., 141: 107883. doi: 10.1016/J.BIOELECHEM.2021.107883.
  11. Passman, F.J., et al. 2009. Effect of ethanol on microbial proliferation in unleaded gasoline microcosms. 11th International Conference on Stability, handling and use of liquid fuels 2009. 3: 1483–1524.
  12. Fernandes, D.M., et al. 2019. Corrosive character of Moringa oleifera Lam biodiesel exposed to carbon steel under simulated storage conditions. Renew. Energy. 139:1263–1271. doi: 10.1016/J.RENENE.2019.03.034.
  13. Almeida, E.S., et al. 2011. Behaviour of the antioxidant tert-butylhydroquinone on the storage stability and corrosive character of biodiesel. Fuel. 90 (11):3480–3484. doi: 10.1016/J.FUEL.2011.06. 056.
  14. Rajasekar, S., et al. 2015. Bacterial degradation of naphtha and its influence on corrosion. Corrosion Sci., 47(1): 257–271. doi: 10.1016/j.corsci.2004. 05.016.
  15. Cycoñ, M., et al. 2013. Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils. J. Env. Manage., 117: 7–16. doi: 10.1016/J.JENVMAN.2012.12.031.
  16. Moreira de Souza, M., et al. 2016. Biodegradation potential of Serratia marcescens for diesel/biodiesel blends. Int. Biodeterior. Biodegrad., 110:141–146. doi: 10.1016/J.IBIOD.2016.03.006.
  17. Ibrahim, M.L., et al. 2013. Production and partial characterization of biosurfactant produced by crude oil degrading bacteria. Int. Biodeterior. Biodegrad., 81: 28–34. doi: 10.1016/J.IBIOD.2012.11.012.
  18. Pusparizkita, Y.M., et al. 2020. Evaluation of bio-corrosion on carbon steel by Bacillus megaterium in biodiesel and diesel oil mixture. J. Eng. Tech. Sci., 52(3): 370-384 doi: 10.5614/j.eng.technol.sci.20
  19. Jia, R., et al. 2017. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. Corrosion Sci., 127: 1–9. doi: 10.1016/j.corsci.2017.08.007.
  20. Parthipan, P., et al. 2018. Characterization of hydrocarbon degrading bacteria isolated from Indian crude oil reservoir and their influence on biocorrosion of carbon steel API 5LX. Int. Biodeterior. Biodegrad., 129: 67–80. doi: 10.1016/j.ibiod.2018.01. 006.
  21. Elumalai, P., et al. 2021. Characterization of crude oil degrading bacterial communities and their impact on biofilm formation. Env. Poll., 286. doi: 10.1016/j.envpol.2021.117556.
  22. Hayakawa, M., et al. 2005. Development of observation method for tempered martensite microstructure using chemical mechanical polishing technique. Mater. Trans., 46(11): 2443–2448. doi: 10.2320/matertrans.46.2443.
  23. Kokilaramani, S., et al. 2021. Microbial influenced corrosion of processing industry by re-circulating wastewater and its control measures – A review. Chemosphere. 265. doi: 10.1016/j.chemosphere. 2020. 129075.
  24. Minoshima, K., Y. Oie and K. Komai. 2003. In-situ AFM imaging system for the environmentally induced damage under dynamic loads in a controlled environment. ISIJ Int., 43(4): 579–588. doi: 10.2355/isijinternational.43.579.
  25. Beech, B., et al. 1996. Comparative studies of bacterial biofilms on steel surfaces using atomic force microscopy and environmental scanning electron microscopy. Biofouling. 10(1–3): 65–77. DOI: 10.1 080/08927019609386271.
  26. Xu, L.C., K.Y. Chan and H.H.P. Fang. 2020. Application of atomic force microscopy in the study of microbiologically influenced corrosion. Mater. Charact., 48 (2–3):195–203. doi: 10.1016/S1044-5803(02)00239-5.
  27. Fang, H.H.P., L.C. Xu and K.Y. Chan. 2000. Influence of Cr3+on microbial cluster formation in biofilm and on steel corrosion. Biotech. Lett., 22(9)801–805. doi: 10.1023/A:1005620606868.
  28. De Araújo, C.M. and D.C. de Oliveira. 2021. Corrosion behaviour of metallic surfaces in biodiesel evaluated by atomic force microscopy, vickers micro hardness and copper strip test. Eng. Fail. Anal., 124:105329. doi: 10.1016/J.ENGFAI LANAL.202 1.105329.
  29. ASTM G31-72. 2004. Standard practice for laboratory immersion corrosion testing of metals. ASTM International.
  30. ASTM G181-21. 2021. Standard test method for conducting friction tests of piston ring and cylinder liner materials under lubricated conditions. ASTM International.
  31. SNI 7182. 2015. Biodiesel. Badan Standardisasi Nasional (National Standardization Agency of Indonesia).
  32. D’Souza, H.F., et al. 2013. Ship ballast tanks a review from microbial corrosion and electrochemical point of view. Ocean Eng., 70: 188–200. doi: 10.1016/j.oceaneng.2013.05.005.
  33. Castaneda, H. and X.D. Benetton. 2008. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions. Corrosion Sci., 50(4): 1169–1183. doi: 10.1016/j.corsci.2007.11.032.
  34. Parthipan, P., et al. 2017. Biocorrosion and its impact on carbon steel API 5LX by Bacillus subtilis A1 and Bacillus cereus A4 isolated from Indian crude oil reservoir. J. Bio Tribo Corrosion. 3(3): 1-12. doi: 10.1007/s40735-017-0091-2.
  35. Duan, S., et al. 2008. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater. Electrochim. Acta. 54(1): 22–28. doi: 10. 101 6/j.electacta.2008.04.085.