Evaluation of PVAc-MgO Nanocomposite Membrane

IJEP 42(6): 716-721 : Vol. 42 Issue. 6 (June 2022)

M. B. Kumbhare and V. S. Sapkal*

Sant Gadge Baba Amravati University, Department of Chemical Technology, Amravti – 444 602, Maharashtra, India

Abstract

Pure PVAc and PVAc-MgO (polyvinyl acetate-magnesium oxide) nanocomposite membranes were fabricated by  solution casting and solvent evaporation methods. Nanocomposite membranes were characterized by the x-ray diffractometer (XRD), differential scanning calorimetry (DSC) and thermogravimetric (TGA) analyser to study the effect of MgO nanoparticles loading on structure, glass transition temperature (Tg) and thermal stability of membrane. The performance of prepared membranes was evaluated in terms of permeability and selectivity of gases to study the effect of MgO loading on gas transport properties. CO2 + H2 mixed gas permeation test was carried out at fixed 24ºC temperature and 3 bar pressure. Obtained result shows that addition of MgO nanoparticles enhances the amorphous regions, thermal stability and glass transition temperature of membrane. Mixed gas permeation test shows that addition of MgO nanoparticles in the PVAc increases permeability of both CO2 and H2 and decreases H2/CO2 selectivity. The highest permeability of CO2 and H2 gas for PVAc-20% MgO nanocomposite membrane was found to be 9.889 and 12.120 barrer.

Keywords

Nanocomposite membrane, Permeability, Selectivity, Polymeric inorganic PVAc-MgO nanocomposite membrane

References

  1. Jacobs, M.L. and D.E. Gottschlich. 2014. Membrane technology and research. Eureka Drive Inc. 39630, Newark, CA.
  2. Hong, M., et al. 2008. Hydrogen purification using a SAPO-34 membrane. J. Membrane Sci., 307:277-283.
  3. Korelskiy, D., et al. 2015. Efficient ceramic zeolite membranes for CO2/H2separation. J. Mater. Chem. A., 3:12500.
  4. Sanstrom, L., E. Sjoberg and J. Hedlund. 2011. Very high flux MF1 membrane for CO2separation. J. Membrane Sci., 380:232-240.
  5. Rao, M.B. and S. Sircar. 1993. Nanoporous carbon membrane for gas separation. Gas separation purification. 7:279-284.
  6. Mushtaq, A., H.B. Mukhtar and A.M. Shariff. 2014. Fabrication and characterization of synthesized polysulphone/polyvinyl lacetate blend membranes. Res. J. Appl. Sci. Eng. Tech., 7 (15):3094-3106.
  7. Li, J., et al. 1998. Effect of polyethyleneglycol (PEG) on gas permeabilites and perm selectivities in its cellulose acetate (CA) blend membranes. J. Membrane Sci., 138:143-152.
  8. Shao, L., et al. 2009. Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future. J. Membrane Sci., 327:18-31.
  9. Morisato, A. and I. Pinnau. 1996. Synthesis and gas permeation properties of poly (4-methyl-2-pentyne). J. Membrane Sci., 121:243-250.
  10. Kammermeyer, K. 1957. Silicon rubber as a selective barrier. Ind. Eng. Chem., 49(10).
  11. Orme, C., et al. 2001. Characterization of gas transport in selected rubbery amorphous poly-phosphazene membranes. J. Membrane Sci., 186:249-256.
  12. Paul, D.R. 1979. Gas sorption and transport in glassy polymers. Phys. Chem., 83:294-302.
  13. Robeson, L.M. 1991. Correlation of separation factor versus permeability for polymeric membranes. J. Membrane Sci., 62:165-185.
  14. Cong, H., et al. 2007. Polymer-inorganic nanocomposite membranes for gas separation. Separation Purification Tech., 55:281-291.
  15. Peng, F., et al. 2005. Hybrid organic-inorganic membrane: Solving the trade-off between permeability and selectivity. Chem. Mater., 17:6790-6796.
  16. Kim, S., et al. 2007. Polysulphone and functionalized carbon nanotube mixed matrix membrane for gas separation: Theory and experiment. J. Membrane Sci., 294:147-158.
  17. Surya, M.R., et al. 2010. Gas permeation behaviour of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Ind. Eng. Chem. Res., 49:6530-6538.
  18. Hosseini, S.S., et al. 2007. Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles. J. Membrane Sci., 302: 207-217.
  19. Arthanarceswaranm, G.T.K. Sriyamana Devi and M. Raajenthiren. 2008. Effect of silica particles on cellulose acetate blend ultrafiltration membrances: Part I. Sep. Purification Tech., 64:38-47.
  20. Memeni, S.M. and M. Pakizeh. 2013. Preparation, characterization and gas permeation study of PSF/MgO nanocomposite membrane. Brazilian. J. Chem. Eng., 30:589-597.
  21. Ahmad, J. and M.B. Hagg. 2013. Polyvinyl acetate/titanium dioxide nanocomposite membranes for gas separation. J. Membrane Sci., 44:5200-5210.
  22. Ahmad, J. and M.B. Hagg. Preparation and characterization of polyvinyl acetate/zeolite 4A mixed matrix membrane for gas separation. J. Membrane Sci., 427:73-84.
  23. Sadeghi, M., et al. 2008. Gas permeation properties of ethylene vinyl acetate-silica nanocomposite membranes. J. Membrane Sci., 322:423-428.
  24. Sadeghi, M., M.A. Semsarzadeh and H. Moadel. 2009. Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nanoparticles. J. Membrane Sci., 331:21-30.
  25. Matteucci, S., et al. 2008. Gas transport properties of MgO filled poly (1-trimethylsilyi-1-propyne). Nanocomposites Polymer. 49:1659-1675.
  26. Yu, B., et al. 2013. Pebax-1657 nanocomposite membranes incorporated with nanoparticles/colloids/carbon nanotubes for CO2/N2and CO2/H2separation. J. Appl. Polym. Sci., 1-9.
  27. Pacchioni, G. 1993. Physisorbed and chemisorbed CO, at surface and step sites of the MgO (100) surface. Surface Sci., 281:207-219.
  28. De Vos, R.M. and H. Verweij. 1998. Improved performance of silica membranes for gas separation. J. Membrane Sci., 1(43):37-51.
  29. Stern, S.A., et al. 1963. Performance of a versatile variable-Volume permeability measurements by the variable-volume and variable-pressure methods. J. Appl. Polym. Sci., 7:2035-2051.
  30. Kumbhane, M.B., V.S. Sapkal and R.S. Sapkal. 2018. PVAc–MgO nanocomposite membranes for H2/CO2 separation. Int. J. Basic Appl. Res., 8 (8):1129-1137.