Combustion Characteristics Analysis of Agricultural Biomass – A Review

IJEP 43(1): 55-63 : Vol. 43 Issue. 1 (January 2023)

Sampathkumar Velusamy*, Anandakumar Subbaiyan, Manoj Shanmugamoorthi, Venkateswara Reddy Vajrala and Sharmma Arulmani

Kongu Engineering College, Department of Civil Engineering, Erode, Tamil Nadu – 638 060, India

Abstract

Million tonnes of agricultural waste are produced in India. From these wastes, we can obtain useful biomass products which will be useful for the local people, living in the developing country. We know that bio-fuel, bio-based materials made from biomass can be used to produce starch, sugar products, oil and resins. Briquette made from agricultural waste is cheap, low-cost and also, is a good replacement for fossil fuels because it emits less pollutants. This paper provides characteristics analysis of biomass briquette made from agricultural waste and its physical properties and quality content.

Keywords

Agricultural waste, Biomass, Briquette, Starch binder, Proximate analysis, Elemental analysis

References

  1. Desai, A.V. 1978. India’s energy consumption. Energy Policy. 6(3):217–230.DOI: 10.1016/0301-4215(78)90052-6. 
  2. Deshannavar, U.B., et al. 2018. Production and characterization of agro-based briquettes and estimation of calorific value by regression analysis: An energy application. Mater. Sci. Energy Tech., 1(2):175-181. DOI: 10.1016/j.mset.2018.07.003.
  3. Jittabut, P. 2015. Physical and thermal properties of briquette fuels from rice straw and sugarcane leaves by mixing molasses. Energy Procedia. 79:2-9. DOI: 10.1016/j.egypro. 2015.11.482.
  4. Karunanithy, C., et al. 2012. Physio-chemical characterization of briquettes made from different feedstocks. Biotech. Res. Int., 1-12. DOI: 10.1155/201 2/165202.
  5. Muraina, H., J. Odusote and A. Adeleke. 2017. Physical properties of biomass fuel briquette from oil palm residues. J. Appl. Sci. Env. Manage., 777. DOI:10.4314/jasem.v21i4.19.
  6. Lubwama, M., et al. 2019. Physical and combustion properties of agricultural residue bio-char bio-composite briquettes as sustainable domestic energy sources. Renewable Energy.148:1002-1016. DOI: 10.1016/j.re nene.2019.10.085.
  7. Daniyanto, S., Deendarlianto and A. Budiman. 2015. Torrefaction of Indonesian sugarcane bagasse to improve bio-syngas quality for gasification process. Energy Procedia. 68:157-166. DOI: 10.1016/j.egypro.2015.03.244.
  8. Brand, M.A., et al. 2017. Production of briquettes as a tool to optimize the use of waste from rice cultivation and industrial processing. Renewable Energy. 111:116-123.DOI: 10.1016/j.renene.201 7.03.084.
  9. Wilczynski, D., et al. 2021. Experimental and numerical analysis of the effect of compaction conditions on briquette properties. Fuel. 288(5):119 613. DOI: 10.1016/j.fuel.2020.119613.
  10. Granado, M.P.P., et al. 2020. Effects of pressure densification on strength and properties of cassava waste briquettes. Renewable Energy. 167:306-312. DOI: 10.1016/j.renene.2020. 11.087.
  11. Tumuluru, J.S., N.A. Yancey and J.J. Kane et al. 2021. Pilot-scale grinding and briquetting studies on variable moisture content municipal solid waste bales- Impact on physical properties, chemical composition and calorific value. 125:316-327. DOI: 10.1016/j.wasman.2021.02.013.
  12. Song, X., et al. 2019. Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust. Renewable Energy.DOI: 10.1016/j.renene.2019. 11.003.
  13. Asamoah, B., et al. 2016. A review on production, marketing and use of fuel briquettes. Resource Recovery and Reuse series 7, CGIAR Research Program on Water, Land and Ecosystems (WLE).
  14. De Oliveira Maia, B.G., et al. 2014. Production and characterization of fuel briquettes from banana leaves waste. Chem. Eng. Transactions. 37: 439-444.
  15. Wang, Q., S. Li and R. Li. 2018. Forecasting energy demand in China and India: Using single-linear, hybrid-linear and non-linear time series forecast techniques. Energy. 161:821-831. DOI: 10.10 16/j.energy.2018.07.168.
  16. Shahbaz, M., et al. 2016. The role of globalization on the recent evolution of energy demand in India : Implications for sustainable development. Energy Economics. 55:52-68.
  17. Kumar, C.R. and M.A. Majid. 2020. Renewable energy for sustainable development in India: Current status, future prospects, challenges, employment, and investment opportunities. Energy Sustain. Soc., 10:1-36.
  18. Acevedo, M. D., et al. 2020. Review of the evolution, approaches and perspectives on alternative uses. Agric. Waste. 22:1-23. DOI: 10.1016/j.gec co.2020.e00902.
  19. Velusamy, S., A. Subbaiyan and R.S. Thangam. 2021. Combustion characteristics of briquette fuels from sorghum panicle-pearl millets using cassava starch binder. Env. Sci. Poll. Int., 28(17): 21471-21485. DOI: 10.1007/s11356-020-1179 0-0.
  20. Sampathkumar, V. et al. 2019. Briquetting of biomass for low cost fuel using farm waste, cow dung and cotton industrial wastes. Int. J. Recent Tech. Eng., 8(3):8349-8353.
  21. Kaur, A., M. Roy, and K. Kundu. 2017. Dentifica-tion of biomass by briquetting: A review. Int. J. Recent Sci. Res., 8:20561-20568. DOI: 10.24327/ijrsr.2017.0810.0916.
  22. Wu, S., et al. 2018. High-strength charcoal briquette preparation from hydrothermal pretreated biomass wastes. Fuel Processing Tech., 171:293-300. DOI:10.1016/j.fuproc.2017.11.025.
  23. Rath, S.S., et al. 2018. Biomass briquette as an alternative reductant for low grade iron ore resources. Biomass Bioenergy. 108:447-454. DOI: 10.1016/biombioe. 2017.10.045.
  24. Sampathkumar, V., et al. 2020. Study of biomass fuel production from different waste residues: A review. Int. J. Eng. Trends Tech., 68(2):97-106.
  25. Liu, L., et al. 2020. Distributed heating/centralized monitoring mode of biomass briquette fuel in Chinese northern rural areas. Renew. Energy. 147: 1221-1230.DOI:10.1016/j.renene.2019.09.086.
  26. Ahmed, S.A., A. Kumari and K. Mandavgane. 2014. A review on briquettes as an alternative fuel. Int. J. Innov. Eng. Tech., 3:139-144.
  27. Xiu, M., et al. 2018. Emissions of particulate matter, Carbon monoxide and nitrogen oxides from the residential burning of waste paper briquettes and other fuels. Env. Res., 167:536-543. DOI: 10.10 16/j.envres. 2018.08.008.
  28. Sunardi, D. and M.A.S. Mandra. 2019. Characteristics of charcoal briquettes from agricultural waste with compaction pressure and particle size variation as alternative fuel. Renewable Energy. 19:139-148.
  29. Sampathkumar, V., et al. 2021. Combustion characteristics of biomass fuel briquettes from onion peels and tamarind shells. Arch. Env. Occup. Health. DOI:10.1080/19338244.2021.1936437.
  30. Tian, S., et al. 2018. Preparation and characteristics of starch esters and its effects on dough: Physico-chemical properties. J. Food Qual., 1-7. DOI: 10.1155/2018/1395978.
  31. Aransiola, E.F., et al. 2019. Effect of binder type, binder concentration and compacting pressure on some physical properties of carbonized corncob briquette. Energy Reports. 5:909-918. DOI:10.101 6/j.egyr.2019.07.011.
  32. Nheta, W., T. P. Lubisi and E. Jeli. 2018. Effect of different binders on mechanical properties of iron flotation concentrate briquettes. Mater. Today : Proceedings. 5(1):294-301. DOI: 10.1016/j.matpr. 2017.11.085.
  33. Davies, R.M. and O.A. Davies. 2013. Effect of briquetting process variables on hygroscopic property of water hyacinth briquettes. J. Renew. Energy. 1-5.DOI:10.1155/2013/429230.
  34. Ifa, L., et al. 2020. Techno-economic analysis of bio-briquette from cashewnut shell waste. Heliyon. 6(9):e05009. DOI: 10.1016/j.heliyon.2020.e0500 9.
  35. Harussani, M.M., et al. 2021. Development and characterization of polypropylene waste from personal protective equipment (PPE) derived char-filled sugar palm starch biocomposite briquettes. Polymers. 13:3-14. DOI: 10.3390/polym13111707.
  36. Borowski, G., W. Stepniewski and K. Wojcik-Oliveira. 2017. Effect of starch binder on charcoal briquette properties. Int. Agrophysics. 31(4):571-574. DOI: 10.1515/intag-2016-0077.
  37. Ajiboye, T., S. Abdulkareem and A.O.Y. Anibijuwon. 2017. Investigation of mechanical properties of briquette product of sawdust-charcoal as a potential domestic energy source. J. Appl. Sci. Env. Manage., 20(4):1179. DOI: 10.4314/jasem.v20i4.34.
  38. Katimbo, A., et al. 2014. Potential of densification of mango waste and effect of binders on produced briquettes. Agric. Eng., 16:146-155.
  39. Wongwuttanasatian, T. and C. Sakkampang. 2016. Combustion characteristics and emission of briquette fuel from biomass mixed with glycerin. Combustion Sci. Tech., 188(6):1011-1019. DOI:10.10 80/00102 202.2015.1136298.
  40. Ajimotokan, H.A., et al. 2019. Combustion characteristics of fuel briquettes made from charcoal particles and sawdust agglomerates. Sci. African. 6(19):e00202. DOI: 10.1016/j.sciaf.2019.e00202.
  41. Kpalo, S.Y., et al. 2020a. Production and characterization of hybrid briquettes from comcobs and oil palm trunk bark under a low pressure densification technique. Sustain, 12:1-16.DOI:10.3390/su12062468.
  42. Kpalo, S.Y., et al. 2020b. A review of technical and economic aspects of biomass briquetting. Sustain., 12(11):4609. DOI:10.3390/su12114609.
  43. Chin, O. 2000. Characteristics of some biomass prepared under modest die pressures. Biomass Bioenergy. 18(3):223-228. DOI: 10.1016/s0961-9534(99)100084-7.
  44. Ndiema, C.K., P. Manga and C. Ruttoh. 2002. Influence of die pressure on relaxation characteristics of briquetted biomass. Energy Conversion Manage., 43(16):2157-2161. DOI: 10.1016/s0196.89 04(01)100165-0.
  45. Espuelas, S., et al. 2020. Low energy spent coffee grounds briquetting with organic binders for biomass fuel manufacturing. Fuel. 278:118310. DOI: 10.1016/j.fuel.2020.118310.
  46. Mitchell, E.J.S., et al. 2020. The use of agricultural residues, wood briquettes and logs for small-scale domestic heating. Fuel Processing Tech., 210:106552. DOI:10.1016/j.fuproc.2020.106 552.
  47. Guo, L., et al. 2016. Influence of moisture content and hammer mill screen size on the physical quality of barley, oat, canola and wheat straw briquettes. Biomass Bioenergy. 94:201-208. DOI: 10.1016/j.biombioe.2016.09.00.
  48. Guo, Z., et al. 2020. Characteristics of biomass charcoal briquettes and pollutant emission reduction for sulphur and nitrogen during combustion. Fuel. 272:117632. DOI: 10.1016/j.fuel.2020. 117632.
  49. Lela, B., M. Barisic and S. Nizetic. 2016. Cardboard/sawdust briquettes as biomass fuel : Physical-mechanical and thermal characteristics. Waste Mange., 47:236-245. DOI: 10.1016/j.wasman.20 15.10.035.
  50. Oladeji, J. 2015. Theoretical aspects of biomass briquetting: A review study. J. Energy Tech. Policy. 5(3):72-82.
  51. Magnago, R.F., et al. 2020. Briquettes of citrus peel and rice husk. J. Cleaner Prod., 276:123820. DOI:10.1016/j.jclepro.2020.123820.
  52. Chungcharoen, T. and N. Srisang. 2020. Preparation and characterization of fuel briquettes made from dual agricultural waste: Cashew nut shells and areca nuts. J. Cleaner Prod., 120434. DOI:10.10 16/j.jclepro. 2020. 120434.
  53. Mijailovica, I., et al. 2014. Energy potential of tobacco stalks in briquettes and pellets production. J. Env. Prot. Ecol., 15(3):1034-1041.