Implementation of PM10 Source Apportionment using Positive Matrix Factorization in Urban Area of Makassar

IJEP 43(6): 571-576 : Vol. 43 Issue. 6 (June 2023)

Y. Sattar1*, K. Kusno2, M. Zulkifli3, A. Aris4 and Zulkifli5

1. Universitas Muslim Indonesia, Department of Environmental Engineering, Makassar-90231, Indonesia
2. Universitas Muslim Indonesia, Department of Mechanical Engineering, Makassar-90231, Indonesia
3. Universitas Muhammadiyah Makassar, Department of Urban and Regional Planning, Makassar-90221, Indonesia
4. Universitas Muslim Indoensia, Department of Architecture, Makassar-90231, Indonesia
5. Universitas Muhammadiyah Makassar, Department of Agriculture, Makassar-90221, Indonesia


Airborne particulate matter with aerodynamic diameter of less than or equal to 10 µm or PM10, has been collected twice a month from October 2021 to July 2022 at site of Makassar, Province of South Sulawesi, Indonesia. The samples were collected using a size selective high volume air sampler sited at Andi Pangeran Pettarani area, an urban mixed commercial and residential area in the city of Makassar. A total of 15 elements were determined from the sample which includes black carbon (BC), Al, Ba, Ca, Cr, Fe, K, Mg, Ba, Na, Ni, Pb, Si, Ti and Zn. The results of the study reported six sources of air pollution in study region using positive matrix factorization (PMF) technique which includes marine, motor vehicle, road dust, soil dust, industry and biomass burning with each contributing 25%, 24%, 16%, 13%, 12%, and 10%, respectively.


Air pollution, Particulate pollution, PM10, Elemental pollution, Positive matrix factorization


  1. IGES. 2007, Air pollution control in the transportation sector. Third phase research report of the urban environment management project. Institute for Global Environmental Strategies (IGES), Japan.
  2. Sattar. A., et al. 2012. A preliminary survey of air quality in Makassar city South Sulawesi, Indonesia. J. Teknologi Sci. Eng., 57:123-136.
  3. Masiol, M., et al. 2017. Analysis of major air pollutants and submicron particles in New York city and Long Island. Atmos. Env., 148: 203-214.
  4. Sattar, Y., et al. 2019. Characteristics of the PM10in the urban environment of Makassar, Indonesia. J. Urban Env. Eng., 13(1):198. doi: 10.4090/juee. 2009.v13n1.198207.
  5. Sattar, Y., et al. 2021. Total suspended particulate matter and PM10concentrations related meteorological conditions in Daya, Makassar. Indian J. Env. Prot., 41(7): 790-795.
  6. Manucci, P.M. and M. Franchini. 2017. Health effects of ambient air pollution in developing countries. Int. J. Env. Res. Public Health. 14:1048. DOI: 10.3390/ijerph14091048.
  7. 7. Saini, M., et al. 2018. The Influence of throat length and vacuum pressure on air pollutant filtration using ejectors. AIP Conference Proceedings. doi: 10.1063/1.5042939.
  8. Sattar, Y., et al. 2020. The effect of ejectors on reduction of indoor air pollution in the welding room. Nature Env. Poll. Tech., 19(4): 1695-1699.
  9. Dockery, D.W. and C.A. Pope. 1997. Outdoor air. I: Particulates. In: Environmental epidemiology. Ed K. Steenland and D.A. Savits. Oxford University Press, Oxford.
  10. Li, R., et al. 2013. Characterization of coarse particulate matter in the western United States: a comparison between observation and modelling. Atmos. Chem. Physics. 13: 1311-1327.
  11. WHO. 2000. Air quality guidelines for Europe. WHO regional publications, European series (2nd edn). World Health Organization, Copenhagen.
  12. Pramuansup, P., et al. 2013. The association between particulate matter 10 and severity of chronic obstructive pulmonary disease, Northern Thailand. Int. J. Social Sci. Humanity. 3:163-166.
  13. Tiwary, A. and J. Colls. 2010. Air pollution: Measurement, modelling and mitigation (3rd edn). Routledge, UK.
  14. Haynes, E.N., et al. 2010. Environmental manganese exposure in residents living near a ferromanganese refinery in Southeast Ohio: A pilot study. NeuroToxicol., 31: 468-474.
  15. Department of Environment, Indonesia. 1999. Government decree no. 41/1999. Air pollution control.
  16. Rashid, M., et al. 2014. PM10black carbon and ionic species concentration of urban atmospheric in Makassar of South Sulawesi Province, Indonesia. Atmos. Poll. Res., 5:610-615. doi: 10.5094/ APR.2014.070.
  17. Sattar, Y., et al. 2014. Black carbon and elemental concentration of ambient particulate matter in Makassar, Indonesia. IOP Conf. Series Earth Env., Sci., 18:012099. doi: 10.1088/1755-1315/ 18/1/012099.
  18. Muis, R., et al. 2021. Survey of environmental baseline in the Nunukan agriculture area, Indonesia. Nature Env. Poll. Tech., 20(1):237-242.
  19. Anggraini, N., et al. 2021. Model of solid waste management (SWM) in coastal slum settlement: Evidence for Makassar city. Nature Env. Poll. Tech., 20(2): 459-466.
  20. Michael, F. and L. Annuaziata. 2012. Handbook of radioactivity analysis (3rd edn). Elsevier Inc., USA.
  21. Biswas, S.K., et al. 2003. Impact of unleaded gasoline introduction on the concentration of lead in the air of Dhaka, Bangladesh. Air Waste Manage. Assoc., 53: 1355-1362.
  22. Begum, B.A., et al. 2010. Identification of sources of fine and coarse particulate matter in Dhaka, Bangladesh. Aerosol Air Quality Res., 10:345-353.
  23. Kothai, P., et al. 2011. Chemical characterization and source identification of particulate matter at urban site of Navi Mumbai, India. Aerosol Air Quality Res., 11:560-569.
  24. USEPA. 2008. Positive matrix factorization (PMF) 3.0 model. U.S. Environmental Protection Agency.
  25. Vallero, D. 2008. Fundamental of air pollution (4th edn). Elsevier, UK.
  26. Paatero, P. and U. Tapper. 1994. Positive matrix factorization : a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics. 5:111-126.
  27. Paatero, P. 1997. Least squares formulation of robust non-negative factors analysis. Chemometrics Intelligent Laboratory Systems. 37:23-35.
  28. Rashid, M., A. Rahmalan and A. Khalik.1997. Characterization of fine and coarse atmospheric aerosols in Kuala Lumpur. Pertanika J. Sci. Tech., 5: 25-42.
  29. Tahir, N.M., et al. 2013. Temporal distribution and chemical characterization of atmospheric particulate matter in the eastern coast of peninsular Malaysia. Aerosol Air Quality Res.,13:584-595.
  30. Chelani, A.B., D.G. Gajghate and S. Devotta. 2008. Source apportionment of PM10in Mumbai India using CMB model. Bull. Env. Contam. Toxicol., 81: 190-195.
  31. Pant, P. and R.M. Harrison. 2012. Critical review of receptor modelling for particulate matter: A case study of India. Atmos. Env., 49: 1-12.
  32. Kirchstetter, T., et al. 2003. Airborne measurements of carbonaceous aerosol in Southern Africa during the dry biomass burning season. J. Geophysics Res., 108 (D13):8476.
  33. Jones, A.M. and R.M. Harrison. 2005. Interpretation of particulate elemental and organic carbon concentrations at rural, urban and kerbside sites. Atmos. Env., 39:7114-7126.
  34. Begum, B.A. and S.K. Biswas. 2009. Characterization and apportionment of source of indoor air particulate matter of AECD campus, Dhaka. J. Bangladesh Academy Sci., 33:25-36.
  35. Chueinta, W., P.K. Hopke and P. Paatero. 2000. Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization. Atmos. Env., 34: 3319-3329.
  36. Han, J.S., et al. 2006. Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan site in East Asia. Atmos. Chem. Phys., 6:211-223.
  37. Santoso, M., et al. 2008. Source identification of the atmospheric aerosol at urban and suburban sites in Indonesia by positive matrix factorization. Sci. Total Env., 397:229-237.
  38. Wang, J., et al. 2013. Contamination characteristics and possible sources of PM10and PM2.5in different functional areas of Shanghai, China. Atmos. Env., 68 : 221-229.
  39. Mouli, P.C., et al. 2006. A study on trace elemental composition of atmospheric aerosols at a semi-arid urban site using ICP-MS technique. Atmos. Env., 40: 136-146.
  40. Khare, P. and B.P. Baruah. 2010. Elemental characterization and source identification of PM2.5using multivariate analysis at the suburban site of Northeast India. Atmos. Res., 98:148-162.
  41. Kim, E.G., P.K. Hopke and E.S. Edgerton. 2003. Source identification of Atlanta aerosol by positive matrix factorization. J. Air Waste Manage., 53:731-739.