Removal of Indoor Air Pollutant Formaldehyde, by Plant-Microbes Combined System

IJEP 43(8): 726-734 : Vol. 43 Issue. 8 (August 2023)

Siddesh V. Siddalingegowda1, R. Sindhu1, N.S. Raju2 and M. Supreeth1*

1. JSS Academy of Higher Education and Research, Department of Microbiology, School of Life Sciences, Mysuru, Karnataka – 570 015, India
2. University of Mysore Manasagangothri, Department of Environmental Science, Mysuru, Karnataka – 570 006, India

Abstract

Air pollution is a major global health issue in developing countries. Nowadays, indoor air pollution has become a significant concern rather than outdoor air pollution due to its known harmful effects on human health. The primary indoor air pollutant is volatile organic compounds (VOCs) due to their adverse effects on human health. Among different hazardous VOCs, formaldehyde, colourless and odourous gas that irritates and causes nasopharyngeal cancer, is a significant pollutant seeking attention. Several studies have reported formaldehyde concentrations in the indoor air of homes and offices in different countries. Hence, it is essential to consider removing formaldehyde from the air. Many physical and chemical methods for formaldehyde removal from indoor air have already been commercially applied in developed countries, but they are expensive and not eco-friendly. Alternatively, plants can remove formaldehyde from polluted air, but they show low efficiency if used alone. However, with high efficiency, plant-microbes can be combined to remove formaldehyde from indoor air pollutants. Compared to physical and chemical methods, the plant-microbes combination system is a promising emerging technique with the advantages of high efficiency, easy operation, low-cost and promotes the social-economic condition of the nation. In this review, we report on plant-microbes combination in removal of formaldehyde efficiently and discuss on possibility of commercialization of dual system and its challenges.

Keywords

Formaldehyde, Pollution, Indoor air

References

  1. Xin, B., Y. Lee and T. Hadibarata. 2020. Phytore-mediation mechanisms in air pollution control : a review. Water Air Soil Poll., 231(8):437. DOI: 10. 1007/s11270-020-04813-6.
  2. Agarwal, P., et al. 2018. Phytoremediation of air pollutants: Prospects and challenges (chapter 7). In Phytomanagement of polluted sites: Market opportunities in sustainable phytoremediation. Elsevier Inc. pp 221-241.
  3. Leung, D.Y.C. 2015. Outdoor-indoor air pollution in urban environment: Challenges and opportunity. Front. Env. Sci., 2:1–7. DOI: 10.3389/fenvs.2014. 00069.
  4. Wei, X., et al. 2017. Phylloremediation of air pollutants: Exploiting the potential of plant leaves and leaf-associated microbes. Front Plant Sci. 8:1–23. DOI: 10.3389/fpls.2017.01318.
  5. Van Tran, V., D. Park and Y.C. Lee. 2020. Indoor air pollution, related human diseases and recent trends in the control and improvement of indoor air quality. Int J. Env. Res. Public Health. 17. DOI: 10.3390/ijerph17082927.
  6. Irga, P.J., T.J. Pettit and F.R. Torpy. 2018. The phytoremediation of indoor air pollution: A review on the technology development from the potted plant through to functional green wall biofilters. Rev. Env. Sci. Biotech., 17:395–415. DOI: 10.1007/s11 157-018-9465-2.
  7. Bernstein, J.A., et al. 2008. The health effects of non-industrial indoor air pollution. J. Allergy Clin. Immunol. 121:585–591. DOI:10.1016/j.jaci.2007. 10.045.
  8. Abdullahi, K.L., J.M. Delgado-Saborit and R.M. Harrison. 2013. Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review. Atmos. Env., 71:260–294. DOI:10.1016/j.atmosenv. 2013.01.061.
  9. Torpy, F.R., T. Pettit and P.J. Irga. 2018. Applied horticultural biotechnology for the mitigation of indoor air pollution. J. People Plants Env., 21:445–460. DOI: 10.11628/ksppe.2018.21.6.445.
  10. Huang, S., et al. 2017. Indoor formaldehyde concentrations in urban China: Preliminary study of some important influencing factors. Sci. Total Env., 590–591:394–405. DOI:10.1016/j.scitotenv. 2017.02.187.
  11. Weschler, C.J. 2009. Changes in indoor pollutants since the 1950s. Atmos. Env., 43:153–169. DOI: 10.1016/j.atmosenv.2008.09.044.
  12. Teiri, H., H. Pourzamani and Y. Hajizadeh. 2018. Phytoremediation of VOCs from indoor air by ornamental potted plants: A pilot study using a palm species under the controlled environment. Chemosphere. 197:375–381. DOI: 10.1016/j.chemo-sphere.2018.01.078.
  13. Aydogan, A. and L.D. Montoya. 2011. Formaldehyde removal by common indoor plant species and various growing media. Atmos Env., 45:2675–2682. DOI: 10.1016/j.atmosenv.2011.02.062.
  14. Salonen, H., et al. 2009. Volatile organic compounds and formaldehyde as explaining factors for sensory irritation in office environments. J. Occup. Env. Hyg., 6:239–247. DOI: 10.1080/15459620 902735892.
  15. Gahukar, S., et al. 2014. Prevalence of formaldehyde in indoor air of gross anatomy laboratory and cadaver storage room of a medical college. J. Env. Occup. Sci., 3:181. DOI: 10.5455/jeos.201409 15115950.
  16. Xiong, J., et al. 2016. Comprehensive influence of environmental factors on the emission rate of formaldehyde and VOCs in building materials: Correlation development and exposure assessment. Env. Res., 151:734–741. DOI: 10.1016/j.envres.2016. 09.003.
  17. Kumar, K.D.E.V.S., et al. 2019. Formaldehyde monitoring in office buildings located in tropical climates of India. IOP Conf. Series Mater. Sci. Eng., 609. DOI: 10.1088/1757-899X/609/4/042006.
  18. Meshalkina, M., V. Sushnikov and N. Kryzhova. 2018. The estimation of formaldehyde concentration in indoor air. MATEC Web Conf., 245:1–6. DOI: 10.1051/matecconf/201824503003.
  19. Onyije, F.M. and O.G. Avwioro. 2012. Excruciating effect of formaldehyde exposure to students in gross anatomy dissection laboratory. Int. J. Occup. Env. Med., 3:92–95.
  20. Wolverton, B. and J.D. Wolverton. 1996. Interior plants: Their influence on airborne microbes inside energy-efficient buildings. J. Mississippi Acad. Sci., 41:99–105.
  21. Swenberg, J.A., et al. 2013. Formaldehyde carcinogenicity research: 30 years and counting for mode of action, epidemiology and cancer risk assessment. Toxicol. Pathol., 41:181–189. DOI: 10.1177/0192623312466459.
  22. Harvey, P.J., et al. 2002. Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Env. Sci. Poll. Res., 9:29–47. DOI: 10.1007/BF02 987315.
  23. Park, J. and S.S. Lee. 2021. Adsorption and desorption of decane using non-carbon adsorbents. Asian J. Atmos. Env., 15:1–9. DOI: 10.5572/ajae. 2021.023.
  24. Ren, H., et al. 2017. Photocatalytic materials and technologies for air purification. J. Hazard. Mater., 325:340–366. DOI: 10.1016/j.jhazmat.2016.08. 072.
  25. Weng, M. and X. Jin. 2015. Study on the air pollution in typical transportation microenvironment: Characteristics and health risks. J. Air Waste Manag. Assoc., 65:59–63. DOI: 10.1080/10962 247.2014.962648.
  26. Robert, B. and G. Nallathambi. 2021. Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: A review. Env. Chem. Lett., 19:2551–2579. DOI: 10.1007/s103 11-020-01168-6.
  27. Henner, P., et al. 1999. Phytotoxicity of ancient gaswork soils. Effect of polycyclic hydrocarbons (PAHs) on plant germination. Org. Geochem., 30:963–969.
  28. Irga, P.J., et al. 2020. Plant–microbe interaction within phytosystems used for air treatment (chapter 12). In From biofiltration to promising options in gaseous fluxes: Biotreatment recent developments, new trends, advances and opportunities. Elsevier Inc. pp 245-262.
  29. Kim, K.J., et al. 2018. Phytoremediation of volatile organic compounds by indoor plants: a review. Hortic Env. Biotech., 59:143–157. DOI: 10.1007/s13580-018-0032-0.
  30. Zhang, H., et al. 2013. Isolation and identification of toluene-metabolizing bacteria from rhizospheres of two indoor plants. Water Air Soil Poll., 224. DOI: 10.1007/s11270-013-1648-4.
  31. He, X., et al. 2021. A rapid method to assess the formaldehyde dehydrogenase activity in plants for the remediation of formaldehyde. Env. Sci. Poll. Res., 28:8782–8790. DOI: 10.1007/s11356-020-11230-z.
  32. Ugrekhelidze, D., F. Korte and G. Kvesitadze. 1997. Uptake and transformation of benzene and toluene by plant leaves. Ecotoxicol. Env. Saf., 37:24–29. DOI: 10.1006/eesa.1996.1512.
  33. Xu, Z., L. Wang and H. Hou. 2011. Formaldehyde removal by potted plant-soil systems. J. Hazard. Mater., 192:314–318. DOI: 10.1016/j.jhazmat. 2011.05.020.
  34. Shao, Y., et al. 2020. Biotechnology progress for removal of indoor gaseous formaldehyde. Appl. Microbiol. Biotech., 104:3715–3727. DOI: 10. 1007/s00253-020-10514-1.
  35. Su, Y.M. and C.H. Lin. 2015. Removal of indoor carbon dioxide and formaldehyde using green walls by bird nest fern. Hortic. J., 84:69-76. DOI: 10.250 3/hortj.CH-114.
  36. Qiu, L., et al. 2014. Formaldehyde biodegradation by immobilized methylobacterium sp. XJLW cells in a three-phase fluidized bed reactor. Bioprocess Biosyst Eng., 37:1377–1384. DOI: 10.1007/s0044 9-013-1110-4.
  37. Lu, N., et al. 2012. Performance of a biological degradation method for indoor formaldehyde removal. Build. Env., 57:253–258. DOI: 10.1016/j.buildenv. 2012.05.007.
  38. Yu, D.S., et al. 2015. Formaldehyde degradation by a newly isolated fungus Aspergillus sp. HUA. Int. J. Env. Sci. Tech., 12:247–254. DOI: 10.100 7/s13762-013-0411-0.
  39. Yoshida, K., et al. 2009. Bioremediation potential of formaldehyde by the marine microalga Nan-nochloropsis oculata ST-3 strain. Appl. Biochem. Biotech., 157:321–328. DOI: 10.1007/s12010-00 8-8314-0.
  40. Diab, F., et al. 2006. Succinate-mediated catabolite repression control on the production of glycine betaine catabolic enzymes in Pseudomonas aeruginosa PAO1 under low and elevated salinities. Microbiol., 152:1395-1406. DOI: 10.1099/mic.0.28652-0.
  41. Godish, T. and C. Guindon. 1989. An assessment of botanical air purification as a formaldehyde mitigation measure under dynamic laboratory chamber conditions. Env. Poll., 62:13–20. DOI: 10.1016/0269-7491(89)90092-4.
  42. Supreeth, M. 2021. Enhanced remediation of pollutants by microorganisms–plant combination. Int. J. Env. Sci. Tech., 19:4587–4598. DOI: 10.1007/s13762-021-03354-7.
  43. Kurt, O.K., J. Zhang and K.E. Pinkerton. 2016. Pulmonary health effects of air pollution. Curr. Opin. Pulm. Med., 22:138-143. DOI: 10.1097/MC P.0000000000000248.
  44. Adaji, E.E., et al. 2019. Understanding the effect of indoor air pollution on pneumonia in children under 5 in low and middle-income countries: A systematic review of evidence. Env. Sci. Poll. Res., 26: 3208-3225. DOI: 10.1007/s11356-018-3769-1.
  45. Tang, X., et al. 2009. Formaldehyde in China: Production, consumption, exposure levels and health effects. Env. Int., 35:1210-1224. DOI: 10.1016/j.envint.2009.06.002.
  46. Cavalcante, R.M., et al. 2005. Exposure assessment for formaldehyde and acetaldehyde in the workplace. Indoor Built. Env., 14:165-172. DOI: 10.1177/1420326X05052564.
  47. Berenjian, A., N. Chan and H.J. Malmiri. 2012. Volatile organic compounds removal methods: A review. American J. Biochem. Biotech., 8:220-229. DOI: 10.3844/ajbbsp.2012.220.229.
  48. Wolverton, B.C., R.C. Mcdonald and E.A. Watkins. 1984. Foliage plants for removing indoor air pollutants from energy-efficient homes. Eco. Bot., 38: 224–228. DOI: 10.1007/BF02858837.
  49. Wolverton, B.C. and M. Nelson. 2020. Using plants and soil microbes to purify indoor air: Lessons from NASA and biosphere 2 experiments. Veolia Inst. Review Facts Rep., 2020:54-59.
  50. Zhao, S., Y. Su and H. Liang. 2019a. Efficiency and mechanism of formaldehyde removal from air by two wild plants; Plantago asiatica L. and Taraxacum mongolicum Hand.-Mazz. J. Env. Health Sci. Eng., 17:141–150. DOI: 10.1007/s40201-018-00335-w.
  51. Lin, M.W., L.Y. Chen and Y.K. Chuah. 2017. Investigation of a potted plant (Hedera helix) with photo-regulation to remove volatile formaldehyde for improving indoor air quality. Aerosol Air Qual. Res., 17:2543–2554. DOI: 10.4209/aaqr.2017.04. 0145.
  52. Yang, Y., Y. Su and S. Zhao. 2020. An efficient plant–microbe phytoremediation method to remove formaldehyde from air. Env. Chem. Lett., 18:197–206. DOI: 10.1007/s10311-019-00922-9.
  53. Davoudi-Kiakalayeh, A., et al. 2017. Alloimmun-ization in thalassemia patients: New insight for healthcare. Int. J. Prev. Med., 8:1–7. DOI: 10.4103/ijpvm.IJPVM.
  54. Bhargava, B., et al. 2021. Mitigation of indoor air pollutants using Areca palm potted plants in real-life settings. Env. Sci. Poll. Res., 28:8898–8906. DOI: 10.1007/s11356-020-11177-1.
  55. Rohela, G.K., et al. 2020. Mulberry (Morus spp.): An ideal plant for sustainable development. Trees For People. 2:100011. DOI: 10.1016/j.tfp.2020. 100011.
  56. Sriprapat, W., et al. 2014. Uptake of toluene and ethyl benzene by plants: Removal of volatile indoor air contaminants. Ecotoxicol Env. Saf., 102:147–151. DOI: 10.1016/j.ecoenv.2014.01.032.
  57. Khaksar, G., C. Treesubsuntorn and P. Thiravetyan. 2016. Endophytic Bacillus cereus ERBP-Clitoria ternatea interactions: Potentials for the enhancement of gaseous formaldehyde removal. Env. Exp. Bot., 126:10-20. DOI: 10.1016/j.envexpbot.2016. 02.009.
  58. Ullah, H., C. Treesubsuntorn and P. Thiravetyan. 2021. Enhancing mixed toluene and formaldehyde pollutant removal by Zamioculcas zamiifolia combined with Sansevieria trifasciata and its CO2emission. Env. Sci. Poll. Res., 28:538-546. DOI: 10.1 007/s11356-020-10342-w.
  59. Wang, Z., J. Pei and J.S. Zhang. 2014. Experimental investigation of the formaldehyde removal mechanisms in a dynamic botanical filtration system for indoor air purification. J. Hazard. Mater., 280:235–243. DOI: 10.1016/j.jhazmat.2014.07. 059.
  60. Suárez-Cáceres, G.P. and L. Pérez-Urrestarazu. 2021. Removal of volatile organic compounds by means of a felt-based living wall using different plant species. Sustainability. 13(11):6393. DOI: 10. 3390/su13116393.
  61. Zhao, S., et al. 2019b. Formaldehyde removal in the air by six plant systems with or without rhizosphere micro-organisms. Int. J. Phytoremediation. 21:1296–1304. DOI: 10.1080/15226514.2019. 1586036.
  62. Cummings, B.E. and M.S. Waring. 2020. Potted plants do not improve indoor air quality: a review and analysis of reported VOC removal efficiencies. J. Expo. Sci .Env. Epidemiol., 30:253–261. DOI: 10.1038/s41370-019-0175-9.
  63. Bandehali, S., et al. 2021. Current state of indoor air phytoremediation using potted plants and green walls. Atmos. (Basel). 12. DOI:10.3390/atmos120 40473.
  64. Ma, C., G. Xianghai and P. Bai. 2014. Solvent extraction of titanium(IV) with organophosphorus extractant from chloride solutions. Asian J. Chem. 26(8):2277-2284.
  65. Lugtenberg, B. 2015. Life of microbes in the rhizosphere. In Principles of plant-microbe interactions. pp 7-15. DOI: 10.1007/978-3-319-08575-3.
  66. Mushtaq, Z. 2020. PGPR: present role, mechanism of action and future prospects along bottlenecks in commercialization. EQA Int. J. Env. Quality. 41:9-15. DOI: 10.6092/issn.2281-4485/11103.