IJEP 44(12): 1069-1080 : Vol. 44 Issue. 12 (December 2024)
Gyanesh Kumar Sinha* and Nilanjan Chattopadhyay
Bennett University, School of Management, Greater Noida – 201 310, Uttar Pradesh, India
Abstract
The rapid pace of urbanization and living standards over the last few decades caused a major shift in demand from non-motorized to motorized personal transportation. The transportation industry is the largest user of fossil fuels and road transport contributes the most to energy-related carbon emissions. Studies have shown that transition from internal combustion-based vehicles to electrical vehicles (EVs) can significantly reduce carbon or greenhouse gas emissions. The current study aims to determine the relative importance of key factors for the adoption of electric vehicles and to prioritize the three major alternatives among electric vehicles—battery, hybrid and plug-in hybrid vehicles. Opinions from a range of specialists employed by the electric car manufacturer were gathered. Important elements influencing the choice and uptake of electric vehicles were determined by a thorough analysis of academic publications from prestigious journals. In this study, two multi-criteria decision-making models were used. The results of these models were utilized to rank the options among three distinct categories of electric vehicles and determine the weights assigned to each criterion or element. Plug-in hybrid vehicle was observed as the best option for transition to electric vehicles as compared to pure battery and hybrid vehicles.
Keywords
Electric vehicles, Multi-criteria decision-making, Fuzzy AHP, Fuzzy TOPSIS, Sustainable transportation
References
- IPCC 2022. The evidence is clear: The time for action is now. We can halve emissions by 2030. The Intergovernmental Panel on Climate Change.
- IEA. 2020a. Data and statistics (India CO2emissions by sector). International Energy Agency. available at: https://www.iea.org/data-and-statistics/data-browser?country=INDIAandfuel=CO2%20 emissionsandindicator=CO2BySector.
- Hagemann, M., et al. 2020. Decarbonising the Indian transport sector pathways and policies. Climate Action Tracker.
- Kumar, M., et al. 2022. Decarbonizing India’s road transport: A meta-analysis of road transport emissions models. International Council on Clean Transportation.
- UNEP. 2022. Transport. United Nations Environment Programme. Available at: https://www.unep. org/explore-topics/energy/what-we-do/transport.
- Asimakopoulou, M.N. and F. Kehagia. 2023. Road network, CO2emissions, linked to sustainable development: A European analysis. E3S Web Conferences. 436: 11010. DOI: 10.1051/e3sconf/202343611010.
- Godinho, C. and K. Coetzee. 2020. Climate transparency report: Comparing G20 climate action and responses to the Covid-19 crisis. Climate Transparency.
- Metais, M.O., et al. 2022. Too much or not enough? Planning electric vehicle charging infrastructure: A review of modelling options. Ren. Sust. Energy Rev., 153: 111719.
- Brady, J. and M. O’Mahony. 2011. Introduction of electric vehicles to Ireland: Socio-economic analysis. Transp. Res. Record J. Trans. Res. Board. 2242(1): 64–71. DOI: 10.3141/2242-08.
- Hawkins, T.R.,et al. 2013. Comparative environmental life cycle assessment of conventional and electric vehicles. J. Ind. Ecol., 17(1): 53–64. DOI: 10.1111/j.1530-9290.2012.00532.x.
- Wang, L., X. Wang and W. Yang. 2020. Optimal design of electric vehicle battery recycling network–From the perspective of electric vehicle manufacturers. Appl. Energy. 275: 115328.
- Jaramillo, P., et al. 2009. Greenhouse gas implications of using coal for transportation: Life cycle assessment of coal-to-liquids, plug-in hybrids and hydrogen pathways. Energy Policy. 37(7): 2689–2695. DOI: 10.1016/j.enpol.2009.03.001.
- Larson, P.D., et al. 2014. Consumer attitudes about electric cars: Pricing analysis and policy implica-tions. Trans. Res. Part A. 69: 299–314. DOI: 10.1016/j.tra.2014.09.00.
- Egbue, O. and S. Long. 2012. Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions. Energy Policy. 48: 717–729. DOI: 10.1016/j.enpol.2012.06.009.
- Ju, N., K.H. Lee and S.H. Kim. 2021. Factors affecting consumer awareness and the purchase of eco-friendly vehicles: Textual analysis of Korean market. Sustain., 13(10): 5566. DOI: 10.3390/su13105566.
- Sriram, K.V., et al. 2022. Factors influencing adoption of electric vehicles– A case in India. Cogent Eng., 9(1): 2085375. DOI: 10.1080/23311916.20 22.2085375.
- IEA. 2021. Global EV outlook 2021. International Energy Agency.
- PIB. 2022. FAME India: Faster adoption and manufacturing of (hybrid and) electric vehicles in India. Press Information Bureau, Ministry of Information and Broadcasting, Govt. of India. Available at: https: //static.pib.gov.in/WriteReadData/specificdocs/documents/2022/jul/doc202271169601.pdf.
- IEA. 2022. Faster adoption and manufacturing of hybrid and electric vehicles (FAME) scheme – Phase I and II. International Energy Agency.
- Bhattacharya, P. 2022. EV@30: How adequate finances, infrastructure can provide fillip to India’s EV dreams. The Times of India.
- Gupta, S.D. 2023. EV penetration: At 1.1%, India is far behind Asian average of 17.3%. Business Standard.
- Dalvi, A. 2023. India Auto Inc’s august retails up 9% at 1.81 million vehicles, growth comes to all segments. Autocar Professional.
- Kuo, T.C., et al. 2022. Toward net-zero: The barrier analysis of electric vehicle adoption and transition using ANP and DEMATEL. Processes. 10(11): 2334. DOI: 10.3390/pr10112334.
- SIAM. 2017. White paper on electric vehicles. Adopting pure electric vehicles- Key policy enablers. Society of Indian Automobile Manufacturers.
- Biswas, T.K. and N. M. Biswas. 1999. Electric vehicle: A natural option for India? IETE Tech. Rev., 16(3–4): 367-373. DOI: 10.1080/02564602.19 99.11416852.
- Goel, S., R. Sharma and A.K. Rathore. 2021. A review on barrier and challenges of electric vehicle in India and vehicle to grid optimisation. Trans. Eng. 4: 100057. DOI: 10.1016/j.treng.2021.100057.
- Noel, L., et al. 2020. Understanding the socio-technical nexus of Nordic electric vehicle (EV) barriers: A qualitative discussion of range, price, charging and knowledge. Energy Policy. 138: 111292. DOI: 10.1016/j.enpol.2020.111292.
- König, A., et al. 2021. An overview of parameter and cost for battery electric vehicles. World Elec. Veh. J., 12(1): 21. DOI: 10.3390/wevj12010021.
- Yildiz, B. 2018. Assessment of policy alternatives for mitigation of barriers to EV adoption. Doctoral Dissertation. Portland State University, Portland, United States.
- Haddadian, G., M. Khodayar and M. Shahidehpour. 2015. Accelerating the global adoption of electric vehicles: Barriers and drivers. Elec. J., 28(10): 53-68. DOI: 10.1016/j.tej.2015.11.011.
- Manzetti, S. and F. Mariasiu. 2015. Electric vehicle battery technologies: From present state to future systems. Ren. Sust. Energy Rev., 51: 1004-1012. DOI: 10.1016/j.rser.2015.07.010.
- Pearre, N.S., et al. 2011. Electric vehicles: How much range is required for a day’s driving? Tran. Res. Part C Emerging Tech., 19(6): 1171–1184. DOI: 10.1016/j.trc.2010.12.010.
- Carley, S., et al. 2013. Intent to purchase plug-in electric vehicle: A survey of early impressions in large US cities. Trans. Res. Part D Trans. Env., 18: 39–45. DOI: 10.1016/j.trd.2012.09.007.
- Brückmann, G., F. Willibald and V. Blanco. 2021. Battery electric vehicle adoption in regions without strong policies. Trans. Res. Part D Trans. Env., 90: 102615. DOI: 10.1016/j.trd.2020.102615.
- Graham-Rowe, E., et al.. 2012. Mainstream consumers driving plug-in battery-electric and plug-in hybrid electric cars: A quantitative analysis of responses and evaluations. Trans. Res. Part A. 46: 140–153. DOI: 10.1016/j.tra.2011.09.008.
- Biresselioglu, M.E., M. D. Kaplan and B. K. Yilmaz. 2018. Electric mobility in Europe: A comprehensive review of motivators and barriers in decision-making processes. Trans. Res. Part A Policy Prac., 109: 1–13. DOI: 10.1016/j.tra.2018.01.017.
- She, Z.Y., et al. 2017. What are the barriers to widespread adoption of battery electric vehicles? A survey of public perception in Tianjin, China. Trans. Policy. 56: 29–40. DOI: 10.1016/j.tranpol.2017. 03.001.
- Bree, B.V., G.P. Verbong and G. J. Kramer. 2010. A multi-level perspective on the introduction of hydrogen and battery-electric vehicles. Tech. Forecasting Social Change. 77(4): 529-540. DOI: 10. 1016/j.techfore.2009.12.005.
- Gallagher, K.S. and E. Muehlegger. 2011. Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology. J. Env. Eco. Manage., 61(1): 1–15. DOI: 10.1016/j.jeem.2010.05. 004.
- Cherchi, E. 2017. A stated choice experiment to measure the effect of informational and normative conformity in the preference for electric vehi-cles. Trans. Res. Part A Policy Prac., 100: 88-104. DOI: 10.1016/j.tra.2017.04.009.
- Krishna, G. 2021. Understanding and identifying barriers to electric vehicle adoption through thematic analysis. Trans. Res. Int. Pers., 10: 100364. DOI: 10.1016/j.trip.2021.100364.
- Krupa, J.S.,et al. 2014. Analysis of a consumer survey on plug-in hybrid electric vehicles. Trans. Res. Part A. 64: 14–31. DOI: 10.1016/j.tra.201 4.02.019.
- Habla, W., V. Huwe and M. Kesternich. 2020. Beyond monetary barriers to electric vehicle adoption: Evidence from observed usage of private and shared cars. ZEW – Centre for European economic research discussion paper no. 20-26. SSRN. DOI: 10.2139/ssrn.36 25452.
- Bhalla, P., I. S. Ali and A. Nazneen, 2018. A study of consumer perception and purchase intention of electric vehicles. European J. Sci. Res., 149(4): 362–368.
- Neubauer, J. and E. Wood. 2014. The impact of range anxiety and home, workplace and public charging infrastructure on simulated battery electric vehicle lifetime utility. J. Power Sour., 257: 12-20. DOI: 10.1016/j.jpowsour.2014.01.075.
- Quak, H., N. Nesterova and T. Van Rooijen. 2016. Possibilities and barriers for using electric-powered vehicles in city logistics practice. Trans. Res. Proc., 12: 157-169. DOI: 10.1016/j.trpro.2016.02.
055. - Peters, A., P. Haan and R.W. Scholz. 2015. Understanding car-buying behaviour: Psychological determinants of energy efficiency and practical implica-tions. Int. J. Sustain. Transport., 9(1): 59–72. DOI: 10.1080/15568318.2012.732672.
- Axsen, J., et al. 2015. Preference and lifestyle heterogeneity among potential plug-in electric vehicle buyers. Energy Eco., 50: 190–201. DOI: 10.1016/j.eneco.2015.05.003.
- Talantsev, A. 2017. Who gains and who loses in the shift to electric vehicles: Impact assessment through multi-criteria multi-stakeholder analysis. Proc. Env. Sci., 37: 257-268. DOI: 10.1016/j.proe nv.2017.03.057.
- Lieven, T.,et al. 2011. Who will buy electric cars? An empirical study in Germany. Trans. Res. Part D Trans. Env., 16(3): 236–243. DOI: 10.1016/j.trd. 2010.12.001.
- Kahn, M.E. 2007. Do greens drive hummers or hybrids? Environmental ideology as a determinant of consumer choice. J. Env. Eco. Man., 54(2): 129–145. DOI: 10.1016/j.jeem.2007.05.001.
- Wang, F., et al. 2017. Analysis of the barriers to widespread adoption of electric vehicles in Shen-zhen, China. Sustain., 9(4): 522. DOI: 10.3390/su9040522.
- Sierzchula, W., et al. 2014. The influence of financial incentives and other socio-economic factors on electric vehicle adoption. Energy Policy. 68: 183-194. DOI: 10.1016/j.enpol.2014.01.043.
- Husin, S., et al. 2019. Implementing fuzzy TOPSIS on project risk variable ranking. Adv. Civil Eng., DOI: 10.1155/2019/9283409.
- Choi, H., J. Lee and Y. Koo. 2023. Value of different electric vehicle charging facility types under different availability situations: A South Korean case study of electric vehicle and internal combustion engine vehicle owners. Energy Policy. 174: 113436. DOI: 10.1016/j.enpol.2023.113436.
- Skippon, S. and M. Garwood. 2011. Responses to battery electric vehicles: UK consumer attitudes and attributions of symbolic meaning following direct experience to reduce psychological distance. Trans. Res. Part D Trans. Env., 16(7): 525–531. DOI: 10.1016/j.trd.2011.05.005.
- Mohamed, M., et al. 2018. The influence of vehicle body type in shaping behavioural intention to acquire electric vehicles: A multi-group structural equation approach. Trans. Res.Part A Policy Prac., 116: 54–72. DOI: 10.1016/j.tra.2018.05.011.
- Diamond, D. 2009. The impact of government incentives for hybrid-electric vehicles: Evidence from US states. Energy Policy. 37(3): 972–983. DOI: 10.1016/j.enpol.2008.09.094.
- Yan, S. 2018. The economic and environmental impacts of tax incentives for battery electric vehicles in Europe. Energy Policy. 123: 53–63. DOI: 10.1016/j.enpol.2018.08.032.
- Colmenar-Santos, A., et al. 2019. Electric vehicle charging strategy to support renewable energy sources in Europe 2050 low-carbon scenario. Energy. 183: 61–74. DOI: 10.1016/j.energy.2019. 06.118.
- Kester, J., et al. 2018. Policy mechanisms to accelerate electric vehicle adoption: A qualitative review from the Nordic region. Ren. Sust. Energy Rev., 94: 719–731. DOI: 10.1016/j.rser.2018.05.067.
- Mecca, B. 2023. Assessing the sustainable development: A review of multi criteria decision analysis for urban and architectural sustainability. J. Multi Criteria Dec. Ana., 30(5-6): 203-218. DOI: 10.1002/mcda.1818.
- Saaty, T.L. 1980. The analytical hierarchy process. McGraw-Hill, New York.
- Sooksaksun, N. and S. Chanta. 2023. Application of analytic hierarchy process indecision making of processed banana products for community enterprises. Int. J. Ana. Hier. Proc., 15(2): 1-21. DOI: 10.13033/ijahp.v15i2.1091.
- Kilincci, O. and S.A. Onal. 2011. Fuzzy AHP approach for supplier selection in a washing machine company. Exp. Sys. Appl., 38(8): 9656-9664. DOI: 10.1016/j.eswa.2011.01.159.
- Chang, D.Y. 1996. Applications of the extent analysis method on fuzzy AHP. European J. Op. Res., 95(3): 649-655. DOI: 10.1016/0377-2217(95)00 300-2.
- Sinha, G. K., D. Dhingra and N. Chattopadhyay. 2023. Fuzzy AHP approach for supply chain strategy selection: A post-pandemic scenario. Praban-dhan Indian J. Manage., 16(3): 8-26.
- Chen, C. T. 2000. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Systems. 114(1): 1-9. DOI: 10.1016/S0165-0114(97)00377-1.
- Singh, R.K. and L. Benyoucef. 2011. A fuzzy TOPSIS based approach for e-sourcing. Eng. Appl. Art. Int., 24(3): 437-448. DOI: 10.1016/j.engappai.2010. 09.006.
- Baharin, N.H., N. F. Rashidi and N. F. Mahad. 2021. Manager selection using fuzzy TOPSIS method. J. Physics Conf. Series. 1988(1): 012057.
- Cilali, B., C.M. Rocco and K. Barker. 2024. Multi-objective decision trees with fuzzy TOPSIS: Application to refugee resettlement planning. J. Multi Criteria Dec. Ana., 31(1-2): 1822. DOI: 10.1002/mcda.1822.
- Chen, S.J. and C.L. Hwang. 1992. Fuzzy multiple attribute decision making methods. Springer, Berlin. pp 289-486. DOI: 10.1007/978-3-642-46768-4_5.
- Chu, T.C. and Y.C. Lin. 2003. A fuzzy TOPSIS method for robot selection. Int. J. Adv. Manuf. Tech., 21: 284-290. DOI: 10.1007/s001700300 033.
- Kumar, S., S. Kumar and A.G. Barman. 2018. Supplier selection using fuzzy TOPSIS multi criteria model for a small scale steel manufacturing unit. Proc. Comp. Sci., 133: 905-912. DOI: 10.1016/j.procs.2018.07.097.
- Ali, S., et al. 2021. Sanitary landfill site selection by integrating AHP and FTOPSIS with GIS: A case study of Memari municipality, India. Env. Sci. Poll. Res., 28: 7528-7550. DOI: 10.1016/j.jenvman.201 5.09.028.
- Espino, D.J., et al. 2018. Decision support model for the selection of asphalt wearing courses in highly trafficked roads. Soft Computing. 22: 7407-7421. DOI: 10.1007/s00500-018-3136-7.
- Buckley, J.J. 1985. Fuzzy hierarchical analysis. Fuzzy Sets Systems. 17 (3): 233-247. DOI: 10.101 6/0165-0114(85)90090-9.