A Review of Produced Water Characteristics, Methods and its Reuse

IJEP 44(3): 235-249 : Vol. 44 Issue. 3 (March 2024)

Sarthak Ghatage1, Vinayak S. Wadgaonkar1*, Pallavi Tatpate2, Dinesh Bhutada2 and Himangi Neve2

1. Dr. Vishwanath Karad MIT World Peace University, School of Petroleum Engineering, Pune – 411 038, Maharashtra, India
2. Dr. Vishwanath Karad MIT World Peace University, School of Chemical Engineering, Pune – 411 038, Maharashtra, India


Since produced water (PW) includes more hydrocarbons, heavy metals and other poisons than any other byproduct of the oil and gas industry, it is the primary source of contamination in this field. Growing industrial activity means more produced water (PW), making environmentally sound PW treatment and reuse that much more important. The optimum ways to purify the produced water and use it in a range of contexts can be chosen with knowledge of water qualities. Produced water can be purified via physical (membrane filtration, adsorption, etc.), chemical (precipitations, oxidations) or biological (living organisms) means (biological aerated filter, activated sludge, anaerobic treatment and others). This review paper aims to educate readers about the physical, chemical and biological processes that go into treating the water produced.


Produced water, Treatment, Water quality, Physico-chemical parameters, Oil and gas industry


  1. Olajire, A. A. 2020. Recent advances on the treatment technology of oil and gas produced water for sustainable energy industry-mechanistic aspects and process chemistry perspectives. Chem. Eng. J. Adv., 4: 100049. DOI: 10.1016/j.ceja.2020.100 049
  2. Dickhout, J.M., et al. 2017. Produced water treatment by membranes: A review from a colloidal perspective. J. Colloid Interf. Sci., 487: 523-534. DOI: 10.1016/j.jcis.2016.10.013.
  3. Igunnu, E.T. and G.Z. Chen. 2014. Produced water treatment technologies. Int. J. Low Carbon Tech., 9(3): 157–177. DOI: 10.1093/ijlct/cts049.
  4. Babu, P., C. Bollineni and N. Daraboina. 2021. Energy analysis of methane-hydrate-based produced water desalination. Energy Fuels. 35(3): 2514–2519. DOI: 10.1021/acs.energyfuels.0c03550.
  5. Ali, S., A.O. Ijaola and E. Asmatulu. 2021. Multifunctional water treatment system for oil and gas-produced water. Sustain. Water Resour. Manage., 7: 89. DOI: 10.1007/s40899-021-00578-w.
  6. Madadizadeh, A., A. Sadeghein and S. A. Riahi. 2021. Comparison of different nanoparticles’ effect on fine migration by low salinity water injection for oil recovery: Introducing an optimum condition. J. Energy Resour. Tech., 144: 013005. DOI: 10.1115/1.4052415.
  7. Tale, F., A. Kalantariasl and M.R. Malayeri. 2021. Estimating transition time from deep filtration of particles to external cake during produced water re-injection and disposal. Part. Sci. Tech., 39: 312–321. DOI: 10.1080/02726351.2020.1713941.
  8. Guerra, K., K. Dahm and S. Dundorf. 2011. Oil and gas produced water management and beneficial use in the western United States. U.S. Department of the Interior, Bureau of Reclamation, Science and Technology Programme report no.157. Technical service centre.
  9. Veil, J. A., M.G. Puder and D.A. Elcock. 2004. white paper describing produced water from production of crude oil, natural gas and coal bed methane. National Energy Technology Laboratory. doi: 10.2172/821666.
  10. Joel, O.F., C.A. Amajuoyi and C.U. Nwokoye. 2010. Characterization of formation water constituents and the effect of freshwater dilution from land rig location of the Niger Delta, Nigeria. J. Appl. Sci. Env. Manage.,14(2): 37-41. DOI: 10.4314/jasem. v14i2.57832.
  11. Jacobs, R.P.W.M., et al. 1992. The composition of produced water from shell operated oil and gas production in the North sea. In Produced water, technological /environmental issues and solutions. Ed J.P. Ray and F.R. Englehart. Plenum Press, New York. pp 13-21.
  12. Jiménez, S., et al. 2017. Integrated processes for produced water polishing: Enhanced flotation/sedimentation combined with advanced oxidation processes. Chemosphere. 168: 309-317. DOI: 10.10 16/j.chemosphere.2016.10.055
  13. Kusworo, T. D., et al. 2018. Oilfield produced water treatment to clean water using integrated activated carbon-bentonite adsorbent and double stages membrane process. Chem. Eng. J., 347: 462-471. DOI: 10.1016/j.cej.2018.04.136z.
  14. Salem, F. and T. Thiemann. 2012. Produced water from oil and gas exploration- Problems, solutions and opportunities. J. Water Resour. Prot., 14: 142-185. DOI: 10.4236/jwarp.2022.142009.
  15. 15. Arowoshola, L., et al. Produced water market: Opportunities in the oil, shale and gas sectors in North America (chapter 6). A global water intelligence publication.
  16. Clark, C.E. and J.A. Veil. 2009. Produced water volumes and management practices in the United States. U.S. Department of Energy, Office of Scientific and Technical Information. doi:10.2172/1007397.
  17. Veil, J.A.A. and C.E.E. Clark. 2011. Produced-water- volume estimates and management prac-tices. SPE Prod. Oper., 26(3): 234-239. DOI: 10.2 118/125999-PA.
  18. Nasiri, M. and I. Jafari. 2017. Produced water from oil-gas plants: A short review on challenges and opportunities period. Polytech. Chem. Eng., 61:73-81. DOI: 10.3311/PPch.8786.
  19. IOGP report. 2002. Aromatics in produced water: Occurrence, fate and effects and treatment. International Association of Oil and Gas Producers, United Kingdom.
  20. Garland, E. 2005. Environmental regulatory framework in Europe: an update. SPE/EPA/ DOE exploration and production environmental conference, Galveston, Texas. DOI: 10.2118/93796-ms.
  21. Veil, J. 2015. US produced water volumes and management practices in 2012. Groundwater Protection Council.
  22. Operation, N.G., et al. 2014. Qatar Petroleum State of Qatar. International Petroleum Technology Conference, Doha, Qatar. Proceedings, pp19–22.
  23. Graham, E.J.S., et al. 2017. Oil and gas produced water as a growth medium for microalgae cultivation: A review and feasibility analysis. Algal Res., 24: 492-504. DOI: 10.1016/j.algal.2017.01.009.
  24. Al-Kaabi, M.A. 2016. Enhancing produced water quality using modified activated carbon. Master’s thesis. Qatar University, Doha, Qatar.
  25. Baca, S.R., A. Kupfer and S. Mclain. 2021. Analysis of the relationship between current regulatory and legal frameworks and the produced water act. NMWRRI Technical completion report no. 396. New Mexico Water Resources Institutes, Las Cruces, New Mexico, USA.
  26. Zemlick, K., et al. 2018. Mapping the energy footprint of produced water management in New Mexico. Env. Res. Lett., 13:024008. DOI: 10.1088/1748-9326/aa9e54.
  27. Duraisamy, R., A. Heydari and A. Henni. 2013. State of the art treatment and produced water. Water Treat., 199-222. DOI: 10.5772/53478.
  28. Dawoud, H.D., et al. 2021. Characterization and treatment technologies applied for produced water in Qatar. Water. 13:3573. DOI: 10.3390/w1324 3573.
  29. Al-Ghouti, M.A., et al. 2019. Produced water characteristics treatment and reuse: A review. J. Water Process Eng., 28: 222-239. DOI: 10.1016/j.jwp e.2019.02.001.
  30. Artheir, D. 2011. Management of produced water from oil and gas wells. Working document of the NPC North American Resource Development Study.
  31. USEPA. 2000. EPA office of compliance sector notebook: Project profile of the oil and gas extraction industry. Office of Enforcement and Compliance Assurance, U.S. Environmental Protection Agency, Wastington, DC.
  32. Fakhru’I-Razi, A., et al. 2009. Review of technologies for oil and gas produced water treatment. J. Hazard. Mater., 170(2-3): 530-551. DOI: 10.1016/i.j hazmat.2009.05.044.
  33. Neff, J., T. Sauer and A. Hart. 2011. Bioaccumu-lation of hydrocarbons from produced water discharged to offshore waters of the U.S. Gulf of Mexico. Produced Water. 441-447. DOI: 10.1007/978-1-4614-0046-2_24.
  34. Fillo, I., S. Karaido and J. Evans. 1992. Sources, characteristics and management of produced water from natural gas production and storage operation. Produced Water. 46:151-161. DOI: 10.1007/978-1-4615-2902-6_12.
  35. USEPA. 1999. Method 1664, revision A: N-hexane extractable material (HEM: oil and grease) and silica gel treated n-hexane extractable material (SGT HEM; non-polar material) by extraction and gravimetry. EPA-821-R-98-002. United States Environmental Protection Agency, Washington, DC.
  36. Tibbetts, P., et al. 1992. A comprehensive determination of produced water composition. Produced Water. 46:97-112. DOI: 10.1007/978-1-4615-29 02-6_9.
  37. Ekins, P., R. Vanner and J. Firebrace. 2006. Zero emissions of oil in water from offshore oil and installations: Economic and environmental implications. J. Clean Prod., 15(13-14): 1302-1315. DOI: 10.1016/j.jclepro.2006.07.014.
  38. Adewani, M.A., J.E. Erb and R.W. Watson. 1992. Initial design considerations for a cost-effective treatment of stripper oil well produced water. In Produced water: Environmental science research (vol 46). Ed J.P. Ray and F.R. Engelhard. Springer, Boston. DOI: 10.1007/978-1-4615-2902-6_40.
  39. Rosenblum, J., et al. 2017. Temporal characterization of flow black and produced water quality from a hydraulically fractured oil and gas well. Sci. Total Env., 596-597: 369-377. DOI: 10.1016/j.sc itotenv.2017.03.294.
  40. Jacobs, R.P.W.M., et al. 1992. The composition of produced water from shell operated oil and gas production in the North sea. In Produced water. Springer, Boston. pp 13-21. DOI: 10.1007/978-1-4615-2002-6_21.
  41. Johnson, B.M., et al. 2008. Feasibility of a pilot-scale hybrid constructed wetland treatment system for simulated natural gas storage produced waters. Env. Geosci., 15:91-104.
  42. Benko, K. and J. Drewes. 2008. Produced water in the western United States: Geographical distribution, occurrence and composition. Env. Eng. Sci., 25(2): 234-246. DOI: 10.1089/ees.2007.0026.
  43. Bhadja, P. and R. Kundu. 2012. Status of the seawater quality at few industrially important coasts of Gujarat (India) off Arabian sea. Indian J. Geo-Mar. Sci., 41(1): 90-97.
  44. Dorea, H., et al. 2007. Analysis of BTEX, PAHs and metals in the oilfield produced water in the state of Sergipe, Brazil. Microchem. J., 85(2): 234-238.
  45. Orem, W., et al. 2014. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale. Int. J. Coal Geol., 126: 26-31. DOI: 10.1016/j.coal.2014.01.0 03.
  46. Dolan, F., T. Gath and T. Hogue. 2018. Assessing the feasibility of using produced water for irrigation in Colorado. Sci. Total. Env., 640-641: 619-628. DOI: 10.1016/j.scitotenv.2018.05.200.
  47. Ozgun, H., et al. 2013. Effects of the pre-treatment alternatives on the treatment of oil-gas field produced water by nano-filtration and reverse osmosis membranes. J. Chem. Tech. Biotech., 88(8): 1576-1583. DOI: 10.1002/jctb.4007.
  48. Adewami, U.P.W. 2002. USGS produced waters database. U.S. Department of the Interior.
  49. Mantell, M. 2011. Produced water reuse and recycling challenges and opportunities across major shale plays. EPA hydraulic fracturing study technical workshop #4: Water resources management. Chesapeake Energy Corporation.
  50. Kusworo, T.D., A.C. Kumoro and D.P. Uteno. 2021. Phenol and ammonia removal in petroleum refinery wastewater using a poly (vinyl) alcohol coated polysulphone nanohybrid membrane. J. Water Process Eng., 39: 101718. DOI: 10.1016/j.jwpe.202 0.101718.
  51. Khan, N., et al. 2016. Volatile-organic molecular characterization of shale-oil produced water from the Pennian basin. Chemosphere. 48:126-136. DOI: 10.1016/j.chemosphere.2015.12.116.
  52. Cluff, M.A. 2014. Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured marcellus shale gas wells. Env. Sci. Tech., 48: 6508-6517. DOI: 10.1021/es501173p.
  53. Alley, B., et al. 2011. Chemical and physical chartacterization of produced waters from conventional and unconventional fossil fuel resources. Chemosphere. 85(1): 74-82. DOI: 10.1016/j.che mosphere. 2011.05.043.
  54. Gregory, K.B., R.D. Vidie and D.A. Dzoaibak. 2011. Water management challenge associated with the production of shale gas by hydraulic fracturing. Elements. 7: 181-186. DOI: 10.2113/gselements.7. 3.181.
  55. Callaghan, D. and W. Daumgartner. 1990. Characterization of residual hydrocarbons in produced water discharged from gas production platforms. European Petroleum Conference. DOI: 10.2118/2088/-ms.
  56. Mintcheva, N., G. Gicheva and M. Panayodova. 2022. Reduction of heavy hydrocarbon from oil-field produced water. Pollutants. 2(2): 234-251. DOI: 10.3390/pollutants 2020016.
  57. Al-Kaabi, M., et al. 2016. Enhancing the quality of produced water by activated carbon. Qatar Found. Annu. Res. Conf. Proc., 22: 16-17.
  58. Alzahrani, S., et al. 2013. Potential tertiary treatment of produced water using highly hydrophilic nanofiltration and reverse osmosis membranes. J. Env. Chem. Eng., 11: 341-349. DOI: 10.1016/j.jece .2013.10.002.
  59. Al-Alaway, A.F. and S.M. Al-Musawi. 2013. Microfiltration membranes for separating oil water emulsion. Iraq. J. Chem. Pet. Eng., 14:53-70. DOI: 10.31699/IJCPE.
  60. Abdulraheem, F.S., et al. 2020. Natural filtration unit for removal of heavy metals from water. IOP Conf. Ser. Mater. Sci. Eng., 888: 012034. DOI: 10.1088/1757-899x/888/1/012034.
  61. Casaday, A.L. 1993. Advances in flotation unit design for produced water treatment. SPE Production operations symposium, Oklahoma city, Oklahoma. Proceedings, pp 581-590.
  62. Alwared, A. and N. Fara. 2015. Coagulation-flotation process for removing oil from wastewater using sawdust and bentonite. J. Eng., 21: 62-76.
  63. Martin, L. 2014. 10 produced water treatment technologies evaluating the pros and cons. Water Online.
  64. Hayes, T. 2004. The electrodyalysis alternative for produced water management. GasTips. 15-20.
  65. ICGCC and ALL Consulting. 2006. A guide to practical mangement of produced water from onshore oil and gas operations in the United States. Interstate Oil and Gas Compact Commission (ICGCC) and All Consulting.
  66. Alipur, Z. and A. Azari. 2020. COD removal from industrial spent caustic wastewater: A review. Env. Chem. Eng., 8: 103678. DOI: 10.1016/jece.2020.1 03678.
  67. Majeed, N.S. and S.N. Abdullah. 2019. Removal of dissolved organic compounds and contaminants from wastewater of a petroleum refinery by ion exchange. J. Eng., 25: 33-49.
  68. Alenazi, M., et al. 2020. Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: Statistical and experimental approach. IOP Conf. Ser. Mater. Sci. Eng., 888: 012064. DOI: 10.1088/1757-899x/888/1/0120 64.
  69. Li, Z., Z. Huaiyu and D.O. Hill. 2000. NH3-N removal in wastewater by chemical precipitation and exploration of reaction. Chongqing Env. Sci., 6:17.
  70. Liu, C., et al. 2000. Chemical control of superpara-magnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J. American Chem. Soc., 122(26): 6263-6267. DOI: 10.1021/ju 0007849.
  71. Zhou, F.S., et al. 2000. Inorganic polymeric flocculent FMA for purifying oilfield produced water: Preparation and uses. Oilfield Chem., 17: 256-259.
  72. Gasperi, J., B. Laborie and V. Rocher. 2012. Treatment of combined sewer overflows by pollastad flocculations: Removal study of a large broad spectrum of pollutants. Chem. Eng. J., 211: 293-301. DOI: 10.1016/j.cej.2012.09.025.
  73. Muruganandham, M., et al. 2014. Recent developments in heterogeneous catalyzed environmental remediation processes. J. Nanosci. Nanotech., 14: 1898-1910. DOI: 10.1166/jnn.2014.8718.
  74. Huang, C.P., C. Dong and Z. Tang. 1993. Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment. Waste Manage., 11(5): 361-377. DOI: 10.1016/0956-053x(9 3)90070-D.
  75. Chacra, L.A., et al. 2018. Application of graphene nanoplatelets and graphene magnetite for the removal of emulsified oil from produced water. J. Env. Chem. Eng., 6: 3018-3033. DOI: 10.1016/j.jece.2 018.04.060.
  76. Mohammed, T., D.A.D. Mohammed and A. Al-Rikaby. 2016. Electroflotocoagulation of emulsified cooling oils as a method of pollution control. Eng. Tech. J., 34: 1636-1650.
  77. Al-Marri, S., et al. 2020. Ultrasonic-electrocoagulation method for nitrate removal from water. IOP Conf. Ser. Mater. Sci. Eng., 888: 012073. DOI: 10.1088/1757-x/888/1/012073.
  78. Fujishima, A. and K. Honda. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature. 238(5358): 37-38. DOI: 10.1038/238037a0.
  79. Adams, M., I. Campbell and P. Roberson. 2008. Novel photocatalytic reactor development for removal of hydrocarbons from water. Int. J. Photo-energy. 1-7. DOI: 10.1155/2008/674537.
  80. Li, G., et al. 2006. Photoelectrocatalytic decontamination of oilfield produced wastewater containing refractory organic pollutants in the presence of high concentration of chloride inons. J. Hazard. Mater., 138(2): 392-400. DOI: 10.1016/j.jhazmat .2006.05.083.
  81. Ma, H. and B. Wang. 2006. Electrochemical pilot scale plant for oil field produced wastewater by M/C/Fe electrodes for injection. J. Hazard. Mater., 132(2-3): 237-243. DOI: 10.1016/j.jhazmat.20 05.09.043.
  82. Kirubakaran, A., S. Jain and R. Nema. 2009. A review on fuel cell technologies and power electronic interface. Renew. Sustain. Energy Rev., 13(9): 2430-2440. DOI: 10.1016/j.rser.2009.04. 004.
  83. Wicks Jr., Z.W., et al. 2006. Organic coatings: Science and Technology (3rd edn). John Wiley and Sons, Inc., Hoboken, New Jersey.
  84. Gunther, F. 2000. Wastewater treatment by grey water seperation: Outline for a biologically based greywater purification plant in Sweden. Ecol. Eng., 15(1): 139-146. DOI: 10.1016/SO925-8574.(99) 00040-3.
  85. Lu, M., et al. 2009. Biological treatment of oilfield produced water: A field pilot study. Int. Biodeterior. Biodegrad., 63: 116-121. DOI: 10.1016/j.ibiod.200 8.09.0009.
  86. Ludzack, F. and D. Noran. 1965. Tolerance of high salinities by conventional wastewater treatment processes. Water Poll. Cont. Fed., 37(10): 1404-1416.
  87. Li, Q., C. Kang and C. Zhang. 2005. Wastewater produced from an oil field and continuous treatment with an oil-de-grading bacterium. Process Biochem., 40: 873-877. DOI: 10.1016/j.procbio.2004.02. 011.
  88. Kose, B., et al. 2012. Performance evaluation of a submerged membrane bioreactor for the treatment of brackish oil and natural gas field produced water. Desalination. 285: 295-300.
  89. Naraghi, Z., et al. 2015. Produced water treatment with simultaneous bioenergy production using novel bioelectro-chemical systems. Electrochim. Acta. 180:535-544. DOI: 10.1016/j.electacta.2015.08. 136.
  90. Stoll, Z., et al. 2015. Shale gas produced water treatment using innovative microbial capacitive desalination cell. J. Hazard. Mater., 283: 847-855. DOI: 10.1016/j.jhazmat.2014.10.015.
  91. Barash, Y. 2010. Biological treatment of produced water. AWE International.
  92. Abbas, A.J., H.A. Gzar and M.N. Rahi. 2021. Oilfield-produced water characteristics and treatment technologies: A mini review. IOP Conf. Ser. Mater. Sci. Eng., 1058: 012063. DOI: 10.1088/1757-899x/1058/1/012063.
  93. Tellez, G.T., N. Nirmalakhandan and J.L. Gardea-Torresdey. 2002. Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water. Adv. Env. Res., 6(4): 455-470. DOI: 10.1016/S1093-019(01)100073-9.
  94. Freire, D.D.C., M.C. Cammarota and G.L. Sant’ Anna. 2001. Biological treatment of oil field wastewater in a sequencing batch reactor. Env. Tech., 22: 125-135. DOI: 10.1080/0956333208618203.
  95. Delin, S.U., et al. 2007. Kinetic performance of oil field produced water treatment by biological aerated filter. Chinese J. Chem. Eng., 15:591-594. DOI:10.1016/S1004-9541(07)60129-3.
  96. Mohan, T.K., et al. 2016. Effect of C/N ratio on denitrification of high-strength nitrate wastewater in anoxic granular sludge sequencing batch reactors. Ecol. Eng., 91: 441-448. DOI: 10.1016/j.eco leng.2016.02.033.
  97. Lin, J., et al. 2016. Effect of COD/N ratio on nitrogen removal in a membrane-aerated biofilm reacto. Int. Biodeterior. Biodegrad., 113: 74-79. DOI: 10.1016/j.jbiod.2016.01.009.
  98. Ryu, H.D., et al. 2008. Nitrogen removal from low carbon-to-nitrogen wastewater in four-stage biological oerated filter system. Process Biochem., 43(7): 729-735.
  99. Royers, J., et al. 2014. A critical analysis of paddlew heel driven raceway ponds for algal biofuel production at commercial scales. Algal Res., 4: 76-88. DOI: 10.1016/j.algal.2013.11.007.
  100. Piechtel, J. 2016. Oil and gas production: Soil contamination and pollution prevention. Appl. Env. Soil Sci., 2707989. DOI: 10.1155/2016/2707989.
  101. Comminellis, C., et al. 2008. Advanced oxidation processes for water treatment: Advances and trends for R&D. J. Chem. Tech. Biotech., 83(6): 769-776. DOI: 10.1002/jctb.1873.
  102. Mendes, L.B.B., et al. 2010. Method for Removing Pollutants from Produced Water. U.S. patent no. US7955505B2. U.S. Patent and Trademark Office, Washington, DC.
  103. Takaeova, A., et al. 2015. Degradation of BTEX by micoralgae Parachlorella kessleri. Petrol Coal. 57(2): 101-107.
  104. Durako, M.J., et al. 1993. Assessment of the toxicity of Kuwait crude oil on the photosynthesis and respiration of sea-grasses of the northern gulf. Mar. Poll. Bull., 27: 123-227.
  105. Zieman, J.C., et al. 1984. The effects of oil an seagrass. In Ecosystems: Restoration of habitats impacted by oil spills. Ed J. Cairns and A.I. Buikema. Butterworth Publishers, Boston. pp 37-64.
  106. Paixdo, J.F., et al. 2007. Rodrigues, estimating the gasoline components and formulations toxicity to microalgae (Tetraselmis chuii) and oyster (Crass-ostrea rhizophoroe) empryos: An approach to minimize environmental pollution risk. Env. Res., 103(3): 365-374.
  107. Masten, L.W., R.L. Boeri and J.D. Walker. 1994. Strategies employed to determine the acute aquatic toxicity of ethyl benzene, a highly volatile, pourly water-soluble chemical. Ecotoxicol. Env. Saf., 27: 335-348. DOI: 10.1006/eesa.1004.1027.
  108. Chisti, Y. 2007. Biodiesel from microalgae. Biotech. Adv., 25(3): 294-306. DOI: 10.1016/j.bio techadv.2007.02.001.
  109. Johnson, R.J., et al. The identification and mechanism of a Scenedesmus spp. causing bio-fouling of an oil field produced water treatment. Int. Biode-terior. Biodegrad., 108: 207-213.
  110. Cao, X., et al. 2009. A new method for water desalination using microbial desalination cells. Env. Sci. Tech., 43: 7148-7152. DOI: 10.1021/es901 950j.
  111. Luo, H., P.E. Jenkins and Z. Ren. 2010. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Env. Sci. Tech., 45: 340-344. DOI: 10.1021/es1022 202.
  112. Jacobson, K.S., D.M. Drew and Z. He. 2011. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Bioresour. Tech., 102: 376-380. DOI: 10.101 6/j.biortech.2010.06.030.
  113. Luo, H., et al. 2012. Microbial desalination cells for improved performance in wastewater treatment, electricity production and desalination. Bioresour. Tech., 105: 60-66. DOI: 10.1016/j.bio tech.2011.11.098.
  114. Luo, H., et al. 2012. Ionic composition and transport mechanisms in microbial desalination cells. J. Mem. Sci., 409-410: 16-23. DOI: 10.1016/j.mems ci.2012.02.059.
  115. Qu, Y., et al. 2012. Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresour. Tech., 106: 89-94. DOI: 10.101 6/j.biortech.2011.11.045.
  116. Forrestal, C., P. Xu and Z. Ren. 2012. Sustainable desalination using a microbial capacitive desalination cell. Energy Env. Sci., 5: 7161. DOI: 10.1039/C2EE21121A.
  117. Forrestal, C., et al. 2014. Microbial capacitive desalination for integrated organic matter and salt removal and energy production from unconventional natural gas produced water. Env. Sci. Water Res. Tech., 1(1): 47-55. DOI: 10.1039/C4EW00050A.
  118. Shrestha, N., et al. 2018. Comparative performances of microbial capacitive deionization cell and microbial fuel cell fed with produced water from the Bakken shale. Bioelectrochem., 121:
    56-64. DOI: 10.1016/j.bioelechem.2018.01.
  119. NRCS. 1999. Natural Resources Conservation Service technical guide. Section 2: Standard specifications. United States Department of Agriculture, Natural Resources Conservation Service, Indianapolis, IN.
  120. GWPC. 2015. Produced water reuse in Oklahoma: Regulatory considerations and references. Ground Water Protection Council, Oklahoma, USA.
  121. Bagheri, M., R. Roshandel and J. Shayegan. 2018. Optimal selection of an integrated produced water treatment system in the upstream of oil industry. Process Saf. Env. Prot., 117: 67–81. DOI: 10.101 6/j.psep.2018.04.010.
  122. Wang, Y., et al. 2021. Effect of temperature on mineral reactions and fines migration during low-salinity water injection into Berea sandstone. J. Pet. Sci. Eng., 202 :108482. DOI: 10.10161j. pet rol2021.108482.