Adsorption of fluoride from water: A review on novel adsorbents Used for defluoridation, regeneration and Field application

IJEP 44(4): 311-325 : Vol. 44 Issue. 4 (April 2024)

Akash S. Jadhav* and Madhukar V. Jadhav

SRES Sanjivani College of Engineering (Affiliated to Savitribai Phule University Pune), Department of Civil Engineering, Kopargaon – 423 603, Maharashtra, India


Fluoride exposure beyond its allowable bound is notable threat to human well-being worldwide. Drinking water is the prime source through which human beings are majorly exposed to fluoride. The need to find fluoride removal techniques has been point of investigation for many years due to its detrimental effects on teeth, skeleton and other body parts due to excessive exposure. Amongst all available techniques for fluoride eradication, adsorption is the most extensively utilized and investigated way owing to its advantages, such as its inexpensiveness, ease of application, ease of applicability, etc., among other existing methods. In this paper, fluoride adsorption studies of various adsorbents done in last half of a decade are assembled and signified graphically from significant available literature records. The requisite of finding simply available, cost-effective, non-toxic and competent adsorbents to reach the rural fluoride affected area is persistently observed from the literature survey. The current paper reviews the existing approaches and evolving tactics of fluoride eradication from water and compiles the work done by current researchers to assess regeneration and field suitability of adsorbents.


Fluoride, Adsorption, Adsorbents, Batch study, Regeneration study


  1. Singh, J., P. Singh and A. Singh. 2016. Fluoride ions vs removal technologies: A study. Arabian J. Chem., 9(6): 815–824. DOI:10.1016/j.arabjc. 2014.06.005.
  2. Maier, F. J. 1947. Methods of removing fluorides from water. American J. Public Health  Nation’s Health. 37(12): 1559–1566. DOI: 10.2105/AJPH. 37.12.1559
  3. WHO. 2008. Guidelines for drinking-water quality (3rd edn, vol 1). World Health Organization, Geneva.
  4. IS 10500. 2012. Drinking water- Specification (2nd rev). Bureau of Indian Standards, New Delhi.
  5. Barathi, M., A.S.K. Kumar and N. Rajesh. 2019. Impact of fluoride in potable water – An outlook on the existing defluoridation strategies and the road ahead. Coordination Chem. Reviews. 387: 121–128. DOI: 10.1016/j.ccr.2019.02.006.
  6. Mukherjee, I. and U.K. Singh. 2019. Fluoride abundance and their release mechanisms in groundwater alongwith associated human health risks in a geologically heterogeneous semi-arid region of East India. Microchem. J., 1–49. DOI: 10.1016/j.micr oc. 2019.104304.
  7. Meenakshi and R.C. Maheshwari. 2006. Fluoride in drinking water and its removal. J. Hazard. Mater., 137(1): 456–463. DOI: 10.1016/j.jhazm at.2006.02.024
  8. Bhatnagar, A., E. Kumar and M. Sillanpää. 2011. Fluoride removal from water by adsorption- A review. Chem. Eng. J., 171(3): 811–840. DOI: 10. 1016/j.cej.2011.05.028.
  9. Damtie, M.M., et al. 2019. Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review. J. Env.  Manage., 251(February): 109524. DOI: 10.1016/j.jenv man. 2019.109524.
  10. Jadhav, S.V., et al. 2015. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. J. Env. Manage., 162: 306–325. DOI: 10.1016/j.jenvman. 2015.07.020.
  11. Mohapatra, M., et al. 2009. Review of fluoride removal from drinking water. J. Env. Manage., 91(1): 67-77. DOI: 10.1016/j.jenvman.2009.08.015.
  12. Min, B.R., A.L. Gill and W.N. Gill. 1984. A note on fluoride removal by reverse osmosis. Desalination. 49: 89–93.
  13. Kumar, S. and K. Gopal. 2000. A review on fluorosis and its preventive strategies. Indian J. Env. Prot., 20(6): 430–440.
  14. Shen, J. and A. Schäfer. 2014. Removal of fluoride and uranium by nanofiltration and reverse osmosis: A review. Chemosphere. 117(1): 679–691. DOI: 10.1016/j.chemosphere.2014.09.090.
  15. Van der Bruggen, B., M. Mänttäri and M. Nyström. 2008. Drawbacks of applying nanofiltration and how to avoid them: A review. Sep. Purif. Tech., 63(2): 251–263. DOI: 10.1016/j.seppur.2008. 05.010.
  16. Venkateswarlu, P., W.D. Armstrong and L. Singer. 1965. Absorption of fluoride and chloride by barley roots. Plant Physiol., 40: 255–261. DOI: 10. 1104/pp.40.2.255.
  17. Lounici, H., et al. 2004. Fluoride removal with electro-activated alumina. Desalination. 161: 287–293.
  18. Kumar, P.S., et al. 2019. Treatment of fluoride-contaminated water. A review. Env. Chem. Letters. 17(4): 1707–1726. DOI: 10.1007/s10311-019-00906-9.
  19. Ho, Y.S. 2004. Selection of optimum sorption isotherm. Carbon. 42(10): 2115–2116. DOI: 10.1016/j.carbon.2004.03.019.
  20. Tomar, V. and D. Kumar. 2013. A critical study on efficiency of different materials for fluoride removal from aqueous media. Chem. Central J., 7(1): 1–15. DOI: 10.1186/1752-153X-7-51.
  21. Biswas, G., et al. 2017. A critical review on occurrence of fluoride and its removal through adsorption with an emphasis on natural minerals. Current Poll. Reports. 3(2): 104–119. DOI: 10. 1007/s40726-017-0054-8.
  22. Tran, V.S., et al. 2015. Typical low-cost biosor-bents for adsorptive removal of specific organic pollutants from water. Bioresour. Tech., 182: 353–363. DOI: 10.1016/j.biortech.2015.02.003.
  23. Renuka, P. and K. Pushpanji. 2013. Review on defluoridation techniques of water. Int. J. Eng. Sci., 2(3): 86–94.
  24. Habuda-Staniæ, M., M.E. Ravancic and A. Flanagan. 2014. A review on adsorption of fluoride from aqueous solution. Mater., (7): 6317–6366. DOI: 10.339 0/ma7096317.
  25. Sharma, B., et al. 2017. Occurrence, detection and defluoridation of fresh India: Case studies. American J. of Water Resour., 5(1): 5–12. DOI: 10.12 691/ajwr-5-1-2.
  26. Karunanithi, M., R. Agarwal and K. Qanungo. 2019. A review of fluoride removal from groundwater. Periodica Polytechnica Chem. Eng., 63(3): 425–437. DOI: 10.3311/PPch.12076.
  27. Yadav, K.K., et al. 2018. A review of emerging adsorbents and current demand for defluoridation of water: Bright future in water sustainability. Env. Int., 111: 80–108. DOI: 10.1016/j.envint.201 7.11. 014.
  28. Mondal, P. and S. George. 2015. A review on adsorbents used for defluoridation of drinking water. Reviews Env. Sci. Biotech., 14(2): 195–210. DOI: 10.1007/s11157-014-9356-0.
  29. Bhatnagar, A., M. Sillanpää and A. Witek-Krowiak. 2015. Agricultural waste peels as versatile biomass for water purification- A review. Chem. Eng. J., 270: 244–271. DOI: 10.1016/j.cej.2015.01.135.
  30. Mandal, N.K. 2014. Performance of low-cost bioad-sorbents for the removal of metal ions – A review. Int. J. Sci. Res., 3(1): 177–180.
  31. Abdolali, A. 2014. Typical lignocellulosic wastes and byproducts for biosorption process in water and wastewater treatment: A critical review. Bioresour. Tech., 160: 57–66. DOI: 10.1016/j.bior tech.2013.12.037.
  32. Miretzky, P. and A.F. Cirelli. 2011. Fluoride removal from water by chitosan derivatives and composites: A review. J. Fluorine Chem., 132(4): 231–240. DOI: 10.1016/j.jfluchem.2011.02.001.
  33. Mehta, D., S. Mazumdar and S.K. Singh. 2015. Magnetic adsorbents for the treatment of water/wastewater- A review. J. Water Process Eng., 7: 244–265. DOI: 10.1016/j.jwpe.2015.07.001.
  34. Vinati, A., B. Mahanty and S.K. Behera. 2015. Clay and clay minerals for fluoride removal from water: A state-of-the-art review. Appl. Clay Sci., 114: 340–348. DOI: 10.1016/j.clay.2015.06.013.
  35. Zhang, Y., et al. 2019. Defluoridation in fixed bed column filled with Zr(IV)-loaded garlic peel. Microchem. J., 145: 47. DOI: 10.1016/j.microc. 2018.11.007.
  36. Huang, K., et al. 2010. Removal of fluoride from aqueous solution onto Zr-loaded garlic peel (Zr-GP) particles. J. Cent. South Univ. Tech., 4: 1129–1132. DOI: 10.1007/s11771.
  37. Tariq, M., et al. 2019. Fluoride removal using simple protonated and xanthate modified protonated Ficus religiosa branch powder in a fixed-bed column. Desalination Water Treat., 150: 204–212. DOI: 10.5004/dwt.2019.23603.
  38. Ravulapalli, S. and K. Ravindhranath. 2017. Defluo-ridation studies using active carbon derived from the barks of Ficus racemosa plant. J. Fluorine Chem., 193: 58–66. DOI: 10.1016/j.jfluchem. 201 6.11.013.
  39. Choong, C.E., et al. 2020. Fluoride removal by palm shell waste based powdered activated carbon vs functionalized carbon with magnesium silicate: Implications for their application in water treatment. Chemosphere. 239:10. DOI: 10.1016/j.che mosphere.2019.124765.
  40. Bhaumik, R. and N.K. Mondal. 2015. Adsorption of fluoride from aqueous solution by a new low-cost adsorbent: Thermally and chemically activated coconut fibre dust. Clean Tech. Env. Policy. 17(8): 2157–2172. DOI: 10.1007/s10098-015-0937-6. 
  41. Mondal, N.K., R. Bhaumik and J.K. Datta. 2015. Removal of fluoride by aluminum impregnated coconut fiber from synthetic fluoride solution and natural water. Alexandria Eng. J., 54(4): 1273–1284. DOI: 10.1016/j.aej.2015.08.006.
  42. Tamrakar, S., et al. 2019. Cost effective natural adsorbents for the removal of fluoride: A green approach. Rasayan J. Chem., 12(2): 455–463. DOI: 10.31788/RJC.2019.1225106.
  43. Chakrabarty, S. and H.P. Sarma. 2012. Defluori-dation of contaminated drinking water using neem charcoal adsorbent: Kinetics and equilibrium studies. Int. J. Chem. Tech. Res., 4(2): 511–516.
  44. Saranpriya, G. and S. S. Sundari. 2017. Reduction of fluoride in drinking water using Azadirachta indica (neem leaves ). Int. J. Sci. Res. Develop., 5(10): 476–480.
  45. Roy, S., et al. 2018. Chemically reduced tea waste biochar and its application in treatment of fluoride containing wastewater: Batch and optimization using response surface methodology. Process Safety Env. Prot., 116. DOI: 10.1016/j.psep.2018. 03.009.
  46. Mondal, M.K. 2010. Removal of Pb (II) from aqueous solution by adsorption using activated tea waste. Korean J. Chem. Eng., 27(1): 144–151. DOI: 10.1007/s11814-009-0304-6.
  47. Cai, H., et al. 2016. Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball-mill. Appl. Surface Sci., 375. DOI: 10.1016/j.apsusc.2016.03.005.
  48. Kumar, M.M., et al. 2018. Defluoridation of water using tamarind gel. Int. J. Latest Tech. Eng. Manage. Appl. Sci., VII(III): 209–210.
  49. Habibi, N., P. Rouhi and B. Ramavandi. 2017. Synthesis of adsorbent from Tamarix hispida and modified by lanthanum metal for fluoride ions removal from wastewater: Adsorbent characteristics and real wastewater treatment data. Data Brief. 13: 749–754. DOI: 10.1016/j.dib.2017.07.010.
  50. Ayyappan, C.S., S. Sreeja and V.M. Bhalambaal. 2015. A novel bio-waste incorporated alginate sorbent for de-fluoridation of water. J. Ecol. Eng., 16(4): 8–13. DOI: 10.12911/22998993/59339.
  51. Pillai, S.S., et al. 2017. A novel adsorbent for the removal of fluoride using Arenthrmum leaves. Int. Adv. Res. J. Sci. Eng. Tech., 4(3): 194–198. DOI: 10.17148/IARJSET.
  52. Sivakumar, D., et al. 2017. Experimental investigations on removal of fluoride in groundwater using Prosopis juliflora. Int. J. Adv. Res. Basic Eng. Sci. Tech., 3(35): 66–70.
  53. Goswami, R. and M. Kumar. 2018. Removal of fluoride from aqueous solution using nanoscale rice husk biochar. Groundwater Sustain. Develop., 7: 446–451. DOI: 10.1016/j.gsd.2017.12.010.
  54. Jadhav, A. and M. Jadhav. 2014. Use of maize husk flyash as an adsorbent for removal of fluoride from water. Int. J. Recent Develop. Eng. Tech., 2(2): 41–45.
  55. Jadhav, A. S. and M.V. Jadhav. 2021. Utilization of black mustard husk ash for adsorption of fluoride from water. Korean J. Chem. Eng., 38(10): 2082–2090. DOI: 10.1007/s11814-021-0913-2.
  56. Bhaumik, R., N.K. Mondal and S. Chattoraj. 2017. An optimization study for defluoridation from synthetic fluoride solution using scale of Indian major carp catla (Catla catla): An unconventional biosorbent. J. Fluorine Chem., 195: 57–69. DOI: 10.1016/j.jfluchem.2017.01.015.
  57. Wendimu, G., F. Zewge and E. Mulugeta. 2017. Aluminium-iron-amended activated bamboo charcoal (AIAABC) for fluoride removal from aqueous solutions. J. Water Process Eng., 16: 123–131. DOI: 10.1016/j.jwpe.2016.12.012.
  58. Biswas, G., et al. 2017. Application of response surface methodology for optimization of biosorption of fluoride from groundwater using Shorea robusta flower petal. Appl. Water Sci., 18. DOI: 10.1007/s13201-017-0630-5.
  59. Gupta, S. K. 2018. Defluoridation studies of groundwater using natural adsorbent prepared from mango bark. Int. J. Chem. Petrochem. Tech., 8(1): 1–8.
  60. Prasad, S., et al. 2017. Removal of fluoride from aqueous solution using Psidium guajava leaves. Desalin. Water Treat., (February): 1–8. DOI: 10.5 004/dwt.2016.0081.
  61. Jadhav, A.S. and M.V. Jadhav. 2022. Use of response surface methodology for optimization of fluoride removal efficiency by adsorption on black mustard husk ash. Mater. Today Proceedings. 61: 150–157. DOI: 10.1016/j.matpr.2021.07.430.
  62. Saikia, P., R.K. Bharali and H.K. Baruah. 2017. Kinetic and thermodynamic studies for fluoride removal using a novel bio-adsorbent from possotia (Vitex negundo) leaf. J. Anal. Sci. Tech., 8(1): 1–9. DOI: 10.1186/s40543-017-0132-y.
  63. Mondal, N.K. 2017. Natural banana (Musa acuminate) peel: an unconventional adsorbent for removal of fluoride from aqueous solution through batch study. Water Conser. Sci. Eng., 1(4): 223–232. DOI: 10.1007/s41101-016-0015-x.
  64. Medellín-Castillo, N.A., et al. 2020. Use of bone char prepared from an invasive species, pleco fish (Pterygoplichthys spp.), to remove fluoride and cadmium(II) in water. J. Env. Manage., 256 (May): 1–10. DOI: 10.1016/j.jenvman.2019.109956.
  65. Shahid, M.K., J.Y. Kim and Y.G. Choi. 2019. Synthesis of bone char from cattle bones and its application for fluoride removal from the contaminated water. Groundwater Sustain. Develop., 8(1–25): 324–331. DOI: 10.1016/j.gsd.2018.12.003.
  66. Bhaumik, R., et al. 2012. Eggshell powder as an adsorbent for removal of fluoride from aqueous solution: Equilibrium, kinetic and thermodynamic studies. E. J. Chem., 9(3): 1457–1480.
  67. Hosseini, S.S., et al. 2019. Eggshell modified with alum as low-cost sorbent for the removal of fluoride from aquatic environments: Isotherm and kinetic studies. Desalination Water Treat., 146: 326–332. DOI: 10.5004/dwt.2019.23595.
  68. Yami, T.L., et al. 2015. Life cycle assessment of adsorbents for fluoride removal from drinking water in east Africa. Int. J. Life Cycle Assess., 1–10. DOI: 10.1007/s11367-015-0920-9.
  69. Abe, I., et al. 2004. Adsorption of fluoride ions onto carbonaceous materials. J. Colloid Interface Sci., 275(1): 35–39. DOI: 10.1016/j.jcis.2003. 12.031.
  70. Alkurdi, S.S.A., et al. 2019. Bone char as a green sorbent for removing health threatening fluoride from drinking water. Env. Int., 127 (December): 704–719.
  71. Rojas-Mayorga, C.K., et al. 2015. Physico-chemical characterization of metal-doped bone chars and their adsorption behaviour for water defluoridation. Appl. Surface Sci., 355: 748–760. DOI: 10.1016/j.apsusc.2015.07.163.
  72. Mukherjee, S., P. Sahu and G. Halder. 2017. Microbial remediation of fluoride-contaminated water via a novel bacterium Providencia vermicola (KX926492). J. Env. Manage., 204: 413–423. DOI: 10.1016/j.jenvman.2017.08.051.
  73. Rajkumar, S., et al. 2019. Low-cost fluoride adsorbents prepared from a renewable biowaste: Syntheses, characterization and modelling studies. Arabian J. Chem., 12(8): 3004–3017. DOI: 10.10 16/j.arabjc.2015.06.028.
  74. Mound, T. 2013. Defluoridation of groundwater using termite mound. Water Air Soil Poll., 224(5): 1–15. DOI: 10.1007/s11270-013-1552-y.
  75. Lee, J. I., et al. 2020. Experimental and model study for fluoride removal by thermally activated sepiolite. Chemosphere. 241: 1–10. DOI: 10.1016/j.chemo-sphere.2019.125094.
  76. Yitbarek, M., et al. 2019. Experimental evaluation of sorptive removal of fluoride from drinking water using natural and brewery waste diatomite. Process Safety Env. Prot., 128: 95–106. DOI: 10.101 6/j.psep.2019.05.052.
  77. Akafu, T., A. Chimdi and K. Gomoro. 2020. Removal of fluoride from drinking water by sorption using diatomite modified with aluminum hydroxide removal of fluoride from drinking water by sorption using diatomite modified with aluminum hydroxide. Int. J. Anal. Methods Chem., DOI: 10.1 155/2019/4831926.
  78. Nabbou, N., et al. 2019. Removal of fluoride from groundwater using natural clay (kaolinite): Optimization of adsorption conditions. Comptes Rendus Chimie. 22(2–3): 105–112. DOI: 10.1016/j.crci. 2018.09.010.
  79. Shahmohammadi-Kalalagh, S., et al. 2011. Isotherm and kinetic studies on adsorption of Pb, Zn and Cu by kaolinite. Caspian J. Env. Sci., 9(2): 243–255.
  80. Gogoi, P.K. and R. Baruah. 2008. Fluoride removal from water by adsorption on acid activated kaolinite clay. Indian J. Chem. Tech., 15: 500–503.
  81. Wang, R., et al. 2017. Study on the adsorption performance for fluoride by mesoporous silica loaded rare earth lanthanum (Ms-La) material. Desalination Water Treat., 96 (November): 104–111. DOI: 10.5004/dwt.2017.21473.
  82. Dehghani, M.H., et al. 2017. Optimization of fluoride adsorption onto natural and modified pumice using response surface methodology: Isotherm, kinetic and thermodynamic studies. Korean J. Chem. Eng., 34(2): 454–462. DOI: 10.1007/s11814-016-0274-4.
  83. Malakootian, M., A. Fatehizadeh and N. Yousefi. 2011. Evaluating the effectiveness of modified pumice in fluoride removal from water. Asian J. Chem., 23(8): 3691–3694.
  84. Soleimani, H., et al. 2019. Effect of modification by five different acids on pumice stone as natural and low-cost adsorbent for removal of humic acid from aqueous solutions- Application of response surface methodology. J. Molecular Liquids. 290: 1-13. DOI: 10.1016/j.molliq.2019.111181.
  85. Mahvi, A.H., et al. 2012. Fluoride adsorption by pumice from aqueous solutions. E. J. Chem., 9(4): 1843–1853. DOI: 10.1155/2012/581459.
  86. Salifu, A., et al. 2013. Aluminum (hydr)oxide coated pumice for fluoride removal from drinking water: Synthesis, equilibrium, kinetics and mechanism. Chem. Eng. J., 228: 63–74. DOI: 10.1016/j.cej.20 13.04.075.
  87. Safari, G.H., et al. 2015. Trends of natural and acid-engineered pumice onto phosphorus ions in aquatic environment: Adsorbent preparation, characterization and kinetic and equilibrium modelling. Desalination Water Treat., 54(11): 3031–3043. DOI: 10.1080/19443994.2014.915385.
  88. Rasuli, L., M.M. Emamjome and A.H. Mahvi. 2014. Removal of fluoride from water solutions by natural zeolite modified with cationic surfactant. Frese-nius Env. Bull., 23(2): 432–439.
  89. Vhahangwele, M., G. W. Mugera and N. Tholiso. 2014. Defluoridation of drinking water using Al -modified bentonite clay: Optimization of fluoride adsorption conditions. Toxic. Env. Chem., (November): 37–41. DOI: 10.1080/02772248.2014. 977289
  90. Thakre, D., et al. 2010. Magnesium incorporated bentonite clay for defluoridation of drinking water. J. Hazard. Mater., 180(1–3): 122–130. DOI: 10. 1016/j.jhazmat.2010.04.001.
  91. Gitari, W. M., et al. 2015. Defluoridation of groundwater using Fe-modified bentonite clay: Optimization of adsorption conditions. Desalination Water Treat., 53(March): 1578–1590. DOI: 10.1080/19443994.2013.855669.
  92. Oladoja, N.A., et al. 2018. Insight into the defluori-dation efficiency of lateritic soil. Env. Progress Sustain. Energy. 38(4): 1–11. DOI: 10.1002/ep.
  93. Masindi, V., W. M. Gitari and T. Ngulube. 2015. Kinetics and equilibrium studies for removal of fluoride from underground water using cryptocrystalline magnesite. J. Water Reuse Desalination. 5(3): 282–292. DOI: 10.2166/wrd.2015.080.
  94. Wambu, E.W., et al. 2013. Removal of fluoride from aqueous solutions by adsorption using a siliceous mineral of a Kenyan origin. Clean Soil Air Water. 41(4): 340–348. DOI: 10.1002/clen.2011 00171.
  95. Kumari, U., S.K. Behera and B.C. Meikap. 2019. A novel acid modified alumina adsorbent with enhanced defluoridation property: Kinetics, isotherm study and applicability on industrial wastewater. J. Hazard. Mater., 365: 868–882. DOI: 10.1016/j.jhazmat.2018.11.064.
  96. Oulebsir, A., et al. 2020. Preparation of mesopo-rous alumina electro-generated by electrocoagulation in NaCl electrolyte and application in fluoride removal with consistent regenerations. Arabian J. Chem., 13(1): 271–289. DOI: 10.1016/j.arabjc. 2017.04.007.
  97. Huang, L., et al. 2020. Enhanced surface hydroxyl groups by using hydrogen peroxide on hollow tubular alumina for removing fluoride. Microporous Mesoporous Mater., 297(January): 1–10. DOI: 10.1016/j.micromeso.2020.110051
  98. Bansiwal, A., et al. 2010. Microporous and meso-porous materials copper oxide incorporated meso-porous alumina for defluoridation of drinking water. Microporous Mesoporous Mater., 129(1–2): 54–61. DOI: 10.1016/j.micromeso.2009. 08.032.
  99. Singh, S., A. Khare and S. Chaudhari. 2020. Enhanced fluoride removal from drinking water using non-calcined synthetic hydroxyapatite. J. Env. Chem. Eng., 8(2): 27. DOI: 10.1016/j.jece.2020. 103704.
  100. Yu, X., et al. 2013. Removal of fluoride from drinking water by cellulose@hydroxyapatite nanoco-mposites. Carbohydrate Polymers. 92(1): 269–275. DOI: 10.1016/j.carbpol.2012.09.045.
  101. Idini, A., et al. 2019. Defluoridation of water through the transformation of octacalcium phosphate into fluorapatite. Heliyon. 5(8): 1–9. DOI: 10.1016/j.heliyon.2019.e02288.
  102. García-Sánchez, J. J., et al. 2017. Removal of fluoride ions by calcium hydroxide-modified iron oxides. Desalination Water Treat., 94: 31–39. DOI: 10.5004/dwt.2017.21517.
  103. Mohapatra, M., et al. 2011. Fluoride adsorption studies on mixed-phase nano iron oxides prepared by surfactant mediation-precipitation technique. J. Hazard. Mater., 186(2–3): 1751–1757. DOI: 10.1 016/j.jhazmat.2010.12.076.
  104. Kagne, S., et al. 2009. Bleaching powder: A versatile adsorbent for the removal of fluoride from aqueous solution. Desalination. 243(1–3): 22–31. DOI: 10.1016/j.desal.2008.04.012.
  105. Thangavel, K. 2017. Eliminations of the fluoride content in drinking water by the isotherms. Indian J. Public Health Res. Develop., 8(3): 4–6. DOI: 10.5958/0976-5506.2017.00219.4.
  106. Nigussie, W., F. Zewge and B.S. Chandravanshi. 2007. Removal of excess fluoride from water using waste residue from alum manufacturing process. J. Hazard. Mater., 147: 954–963. DOI: 10.1 016/j.jhazmat.2007.01.126.
  107. Wagutu, A.W., R. Machunda and Y.A.C. Jande. 2018. Crustacean derived calcium phosphate systems: Application in defluoridation of drinking water in east African rift valley. J. Hazard. Mater., 347: 95–105. DOI: 10.1016/j.jhazmat.2017. 12.0 49.
  108. Premathilaka, R.W. 2019. Fluoride in drinking water and nanotechnological approaches for eliminating excess fluoride. J. Nanotech., 1-15.
  109. Nehra, S., S. Raghav and D. Kumar. 2020. Biomaterial functionalized cerium nanocomposite for removal of fluoride using central composite design optimization study. Env. Poll., 258: 32. DOI: 10.1016/j.envpol.2019.113773.
  110. Affonso, L.N., et al. 2020. Removal of fluoride from fertilizer industry effluent using carbon nanotubes stabilized in chitosan sponge. J. Hazard. Mater., 388: 1–41. DOI: 10.1016/j.jhazmat. 2020.122042.
  111. Ahmadi, S., et al. 2019. Data on the removal of fluoride from aqueous solutions using synthesized P/l-Fe2O3nanoparticles: A novel adsorbent. Methods X. 6: 98–106. DOI: 10.1016/j.mex. 2018.12. 009.
  112. Hafshejani, L.D., et al. 2017. Optimization of fluoride removal from aqueous solution by Al2O3nanoparticles. J. Molecular Liquids. 238: 1–39. DOI: 10.1016/j.molliq.2017.04.104.
  113. Dhillon, A., et al. 2018. Excellent disinfection and fluoride removal using bifunctional nanocomposite. Chem. Eng. J., 337: 193–200. DOI: 10.1016/j.ce j.2017.12.030.
  114. Adak, M.K., et al. 2017. Removal of fluoride from drinking water using highly efficient nano-adsorbent, Al(III)-Fe(III)-La(III) trimetallic oxide prepared by chemical route. J. Alloys Compounds. 719(III): 460–469. DOI: 10.1016/j.jallcom.2017.05.149.
  115. Maliyekkal, S.M., K.R. Antony and T. Pradeep. 2010. High yield combustion synthesis of nano-magnesia and its application for fluoride removal. Sci. Total Env., 408: 2273–2282. DOI: 10.1016/j.scitotenv.2010.01.062.
  116. Rout, T.K., et al. 2015. Study the removal of fluoride from aqueous medium by using nano-composites. J. Encapsulation Adsorption Sci., 5(1): 38–52.
  117. Zendehdel, M., et al. 2017. Removal of fluoride from aqueous solution by adsorption on NaP: HAp nanocomposite using response surface methodology. Process Safety Env. Prot., 109: 172–191. DOI: 10.1016/j.psep.2017.03.028.
  118. Chi, Y., et al. 2017. Preparation of Mg-Al-Ce triple-metal composites for fluoride removal from aqueous solutions. J. Molecular Liquids. 242: 416–422. DOI: 10.1016/j.molliq.2017.07.026.
  119. Sinha, V. and S. Chakma. 2020. Synthesis and evaluation of CMC-g-AMPS/Fe/Al/AC composite hydrogel and their use in fluoride removal from aqueous solution. Env. Tech. Innov., 17:13. DOI: 10.1016/j.eti.2020.100620.
  120. Gao, M., et al. 2020. Efficient removal of fluoride from aqueous solutions using 3D flower-like hierarchical zinc-magnesium-aluminum ternary oxide microspheres. Chem. Eng. J., 380:11. DOI: 10.10 16/j.cej.2019.122459.
  121. Tolkou, A.K., et al. 2019. Fluoride removal from water by composite Al/Fe/Si/Mg pre-polymerized coagulants: Characterization and application. Chemosphere. 231: 528–537. DOI: 10.1016/j.chemosphere.2019.05.183.
  122. Tao, W., et al. 2020. Removal of fluoride from wastewater solution using Ce-AlOOH with oxalic acid as modification. J. Hazard. Mater., 384:10. DOI: 10.1016/j.jhazmat.2019.121373.
  123. Raghav, S., M. Nair and D. Kumar. 2019. Tetragonal prism shaped Ni-Al bimetallic adsorbent for study of adsorptive removal of fluoride and role of ion-exchange. Appl. Surf. Sci., 498(March): 11. DOI: 10.1016/j.apsusc.2019.143785.
  124. Zereffa, E.A., et al. 2019. Application of novel clay composite adsorbent for fluoride removal. Mater. Sci. Res. India. 16: 164-173. DOI: 10. 130 05/msri/160209.
  125. Liu, J., et al. 2019. Mg-Al mixed oxide adsorbent synthesized using FCT template for fluoride removal from drinking water. Bioinorg. Chem. Appl. 1–11. DOI: 10.1155/2019/5840205.
  126. Wang, A., et al. 2018. Adsorption of fluoride by the calcium alginate embedded with Mg-Al-Ce trimetal oxides. Korean J. Chem. Eng., 35(8): 1636–1641. DOI: 10.1007/s11814-018-0056-2.
  127. Zhang, J., et al. 2017. Fluoride removal by Al, Ti, and Fe hydroxides and coexisting ion effect. J. Env. Sci. (China). 57: 1–6. DOI: 10.1016/j.jes. 2017.03.015.
  128. Wu, T., L. Mao and H. Wang. 2017. Adsorption of fluoride from aqueous solution by using hybrid adsorbent fabricated with Mg/Fe composite oxide and alginate via a facile method. J. Fluorine Chem., 200 (January): 8–17. DOI: 10.1016/j.jfluch-em. 2017.05.005.
  129. Pandi, K., S. Periyasamy and N. Viswanathan. 2017. Remediation of fluoride from drinking water using magnetic iron oxide coated hydrotalcite/chitosan composite. Int. J. Biol. Macromolecules. 104: 1569–1577. DOI: 10.1016/j.ijbiomac.2017. 02.037.
  130. Thakre, D., et al. 2010. Chitosan based mesopo-rous Ti-Al binary metal oxide supported beads for defluoridation of water. Chem. Eng. J., 158(2): 315–324. DOI: 10.1016/j.cej.2010. 01.008.
  131. Liu, Q., et al. 2013. Adsorption of fluoride from aqueous solution by enhanced chitosan/bentonite composite. Water Sci. Tech., 68(9): 2074–2081. DOI: 10.2166/wst.2013.456.
  132. Shyamal, D.S. and P.K. Ghosh. 2019. Efficiency of Portland pozzolana cement as an adsorbent in removing excess fluoride from groundwater. Groundwater Sustain. Develop., 9 (June): 7. DOI: 10.1016/j.gsd.2019.100248.
  133. Bibi, S., et al. 2015. Evaluation of industrial based adsorbents for simultaneous removal of arsenic and fluoride from drinking water. J. Clean. Prod., 87(1): 882–896. DOI:10.1016/j.jclepro.2014. 09.030.
  134. Gupta, V.K., I. Ali and V.K. Saini. 2007. Defluori-dation of wastewaters using waste carbon slurry. Water Res., 41(15): 3307–3316. DOI: 10.1016/j.watres.2007.04.029.
  135. Li, Y., et al. 2018. The adsorptive removal of fluoride from aqueous solution by modified sludge: Optimization using response surface methodology. Int. J. Env. Res. Public Health. 15(4): 1–14. DOI: 10.3390/ijerph15040826.
  136. Karthikeyan, G. and S.S. Ilango. 2007. Fluoride sorption using Morringa indica-based activated carbon. Iranian J. Env. Health Sci. Eng., 4(1): 21–28.
  137. Tembhurkar, A.R. and S. Dongre. 2006. Studies on fluoride removal using adsorption process. J. Env. Sci. Eng., 48(3): 151–156.
  138. Ben Amor, T., et al. 2017. Fluoride removal from natural water by modified cationic resin. Res. J. Chem. Env., 21(12): 1–5.
  139. Cho, D.W., et al. 2020. Water defluorination using granular composite synthesized via hydrothermal treatment of polyaluminum chloride (PAC) sludge. Chemosphere. 247: 8. DOI: 10.1016/j.che mosph-ere.2020.125899.
  140. Kumari, U., et al. 2020. Facile method to synthesize efficient adsorbent from alumina by nitric acid activation: Batch scale defluoridation, kinetics, isotherm studies and implementation on industrial wastewater treatment. J. Hazard. Mater., 381 (April):15. DOI: 10.1016/j.jhazmat. 2019.120917.
  141. Sun, Y., et al. 2011. Removal of fluoride from drinking water by natural stilbite zeolite modified with Fe(III). Desalination. 277(1–3): 121–127. DOI: 10.1016/j.desal.2011.04.013.
  142. Haslija, A., et al. 2019. Column efficiency of fluoride removal using quaternized kalm kernel shell (QPKS ). Int. J. Chem. Eng., 13.
  143. Srimurali, M. and J. Karthikeyan. 2015. Activated alumina: Defluoridation of water and household application- A study. 12th international water technology conference (IWTC12 2008). Alexandria, Egypt. Proceedings, pp 153–165.
  144. Cai, J., et al. 2018. Enhanced defluoridation using novel millisphere nanocomposite of La-doped Li-Al layered double hydroxides supported by polymeric anion exchanger. Sci. Reports. (March): 1–10. DOI: 10.1038/s41598-018-29497-1.
  145. Aly, Z., A. Graulet and N. Scales. 2014. Removal of aluminium from aqueous solutions using PAN-based adsorbents: characterisation, kinetics, equilibrium and thermodynamic studies. Env. Sci. Poll. Res., 21:3972–3986. DOI: 10.1007/s113 56-013-2305-6.
  146. Gitari, W.M., A.A. Izuagie and J.R. Gumbo. 2020. Synthesis, characterization and batch assessment of groundwater fluoride removal capacity of tri-metal Mg/Ce/Mn oxide-modified diatomaceous earth. Arabian J. Chem., 13(1): 1–16. DOI: 10.101 6/j.arabjc.2017.01.002.
  147. Wu, P., et. al. 2017. Adsorption of fluoride at the interface of water with calcined magnesium–ferri–lanthanum hydrotalcite like compound. RSC Adv., 7: 26104–26112. DOI: 10.1039/C7RA04382A.
  148. Yadav, M. and N. Kumar. 2017. Isotherm investigation for the sorption of fluoride onto bio-F: comparison of linear and non-linear regression method. Appl. Water Sci., 7: 4793–4800.
  149. Patil, R. N. 2016. Removal of fluoride from groundwater by using treated bark of Phyllanthus emblica (amla) tree. Int. J. Civil Eng. Tech., 7(6): 11–20.
  150. Gong, W.X., et al. 2012. Adsorption of fluoride onto different types of aluminas. Chem. Eng. J., 189–190: 126–133. DOI: 10.1016/j.cej.2012. 02.041.
  151. Ayawei, N., A.N. Ebelegi and D. Wankasi. 2017. Modelling and interpretation of adsorption isotherms. J. Chem., 1–11.
  152. Wu, F., et al. 2010. A new linear form analysis of Redlich-Peterson isotherm equation for the adsorptions of dyes. Chem. Eng. J., 162(1): 21–27. DOI: 10.1016/j.cej.2010.03.006.
  153. Telkapalliwar, N.G. and V.M. Shivankar. 2019. Data of characterization and adsorption of fluoride from aqueous solution by using modified Azadirachta indica bark. Data Brief. 26: 29. DOI: 10.1016/j.dib.2019.104509.
  154. Shakya, A.K., R. Bhande and P.K. Ghosh. 2019. A practical approach on reuse of drinking water treatment plant residuals for fluoride removal. Env. Tech. (United Kingdom). 3330: 1–13. DOI: 10.108 0/09593330.2019.1588383.
  155. Ravancic, M.E. and M. Habuda-Staniæ. 2015. Equilibrium and kinetics studies for the adsorption of fluoride onto commercial activated carbons using fluoride ion-selective electrode. Int. J. Electrochem. Sci., 10(10): 8137–8149.
  156. Asgari, G., B. Roshani and G. Ghanizadeh. 2012. The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone. J. Hazard. Mater., 217–218: 123–132. DOI: 10.1 016/j.jhazmat.2012.03.003.
  157. Suneetha, M., B.S. Sundar and K. Ravindhranath. 2015. Removal of fluoride from polluted waters using active carbon derived from barks of Vitex negundo plant. J. Anal. Sci. Tech., 6(1): 1–19. DOI: 10.1186/s40543-014-0042-1.
  158. Ho, Y.S. 2004. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scien-tometrics. 59(1): 171–177. DOI: 10.1023/B:SCIE.
  159. Liu, R., et al. 2011. Defluoridation by freshly prepared aluminum hydroxides. Chem. Eng. J., 175(1): 144–149. DOI: 10.1016/j.cej.2011. 09.083.
  160. Fierro, V. and V. Torne. 2008. Adsorption of phenol onto activated carbons having different textural and surface properties. 111: 276–284. DOI: 10.1016/j.micromeso.2007.08.002.
  161. Rajkumar, S., et al. 2019. Low-cost fluoride adsorbents prepared from a renewable biowaste: Syntheses, characterization and modelling studies. Arabian J. Chem., 12(8): 3004–3017. DOI: 10.10 16/j.arabjc.2015.06.028.
  162. Tian, Z. and Y. Gan. 2019. In-situ synthesis of structural hierarchy flowerlike zeolite and its application for fluoride removal in aqueous solution. J. Nanomater., 1–11.
  163. Adithya, G.T. and C. Sivasankari. 2019. Stable and microcrystalline Ce-Fe Bi-metal oxide nano particles: Synthesis, characterization and fluoride adsorption performance in drinking water. Indian J. Chem. Tech., 26(March): 122–130.
  164. Wang, L., et al. 2017. Insight into mechanisms of fluoride removal from contaminated groundwater using lanthanum-modified bone waste. RSC Adv., 7: 54291–54305. DOI: 10.1039/c7ra10713g.
  165. Fernando, M.S., et al. 2019. hydroxyapatite for defluoridation of water. RSC Adv., 9: 35588–35598. DOI: 10.1039/c9ra03981c.
  166. Herath, H.M.A.S., et al. 2018. Repeated heat regeneration of bone char for sustainable use in fluoride removal from drinking water. healthcare. 143(6): 1–13. DOI: 10.3390/healthcare60401
  167. Alagumuthu, G., V. Veeraputhiran and R. Venkata-raman. 2010. Adsorption isotherms on fluoride removal: Batch techniques. Arch. Appl. Sci. Res., 2(4): 170–185.