Revitalizing Parboiled Rice Mill Wastewater through Algal Treatment: Towards Biodiesel Production and Environmental Health

IJEP 44(5): 412-417 : Vol. 44 Issue. 5 (May 2024)

K.S. Jinesh Babu*, B. Praburajan, J.M. Kiruphanithi, D.T. Surya Bharathi and J. Umar Farooq

Mepco Schlenk Engineering College, Department of Civil Engineering, Sivakasi – 626 005, Tamil Nadu, India

Abstract

Parboiled rice mill wastewater (PRMW), a nutrient rich wastewater released from rice mills, leads to eutrophication in receiving waterbodies. The study presented in this paper made use of freshwater green algae, Chlorella vulgaris, to treat this wastewater. From the study, it was found that there is a significant reduction in nutrients, nitrate and phosphate, which are primarily responsible for eutrophication. Also, the algal treatment brought down the chemical oxygen demand (COD) level to a great extent. Besides the treatment, the grown-up lipid enriched algal biomass was used for biodiesel extraction. Lipid was extracted by Soxhlet apparatus, which is followed by distillation and extraction of biodiesel by transesterification process.

Keywords

Algal treatment, Biodiesel, Chlorella vulgaris, Lipid, Parboiled rice mill wastewater

References

  1. Kumar, S. and S. Deswal. 2021. A review on current techniques used in India for rice mill wastewater treatment and emerging techniques with valuable byproducts. Env. Sci. Poll. Res., 28: 7652-7668. DOI: 10.1007/s11356-020-11898-3.
  2. Mofijur, M., et al. 2019. Recent development in the production of third generation biodiesel from macroalgae. Energy Procedia. 156: 53-58. DOI: 10.1016/j.egypro.2018.11.088.
  3. Keerthana, S., et al. 2020. Scenedesmus peesensis cultivation in rice mill effluent using commercial scale nutrient sources. Bioresour. Tech. Reports. 9: 100379. DOI: 10.1016/j.biteb.2019.100379.
  4. Tan, J.S., et al. 2020. A review on microalgae cultivation and harvesting and their biomass extration processing using ionic liquids. Bioeng., 11. DOI: 10.1080/21655979.2020.1711626.
  5. Hossain, N. and T.M.I. Mahlia. 2019. Progress in physico-chemical parameters of microalgae cultivation for biofuel production. Critical Reviews Biotech., 39:835-859. DOI: 10.1080/07388551. 2019.1624945.
  6. Narala, R.R., et al. 2016. Comparison of microalgae cultivation in photo bioreactor: Open raceway pond and a two-stage hybrid system. Frontiers Energy Res., 4: 29. DOI: 10.3389/fenrg. 2016. 00029.
  7. Chaudhary, R., A.K. Dikshit and Y.W. Tong. 2017. Carbon dioxide biofixation and phycoremediation of municipal wastewater using Chlorella vulgaris and Seenedesmus obliquus. Env. Sci. Poll. Res., 25: 20399-20406. DOI:10.1007/s11356-017-9575.3.
  8. Chen, Y., C. Xu and S.V. Nathan. 2017. Microalgae a robust ‘green bio-bridge’ between energy and environment. Critical Reviews Biotech., 38: 351-368. DOI: 10.1080/073885551.2017.1355774.
  9. Rafa, N., et al. 2021. Strategies to produce cost-effective third generation biofuel from microalgae. Frontiers Engergy Res., 9. DOI: 10.3389/fenrg. 2021.749968.
  10. Abinandan, S., R. Bhattacharya and S. Shantha-kumar. 2014. Efficacy of Chlorella pyrenoidosa and Seenedesmus abundans for nutrient removal is rice mill effluent (paddy soaked water). Int. J. Phytore-mediation. 17: 4. DOI: 10.1080/15226514.2014. 910167.
  11. Mukherjeee, C., et al. 2016. Parboiled rice effluent: A wastewater niche for microalgae and cyanobacteria with growth coupled to comprehensive remediation and phosphorus biofertilization. Algal Res., 19: 225-236. DOI: 10.1016/j.algal.201 6.09. 009.
  12. Chia, S.R., et al. 2017. Sustainable approaches for algae utilization in bioenergy production. Renew. Energy. 129 (Part B). DOI: 10.1016/j.renene.2017.04. 001.
  13. Sampat, M.C. and D.M. Arun. 2018. Operational strategies for cost effective mass cultivation of halophic microalgal strain Pseudanabacha limnetiea in 1000 L flat panel photobioreator. J. Petroleum Env. Biotech., 9:4. DOI: 10.4172/2157-7463.1000 380.
  14. Khan, S., et al. 2017. Biodiesel production from algae to overcome the energy crisis. Hayat J. Biosci., 24:4. DOI: 10.1016/j.hib.2017.10.003.
  15. Kudahettige, N.P., J. Pickova and F.G. Gentilij. 2018. Stressing algae for biofuel production production biomass and biochemical composition Scenedesmus dimorphus and Sclenastrum minutum grown in muncipal untreated wastewater. Frontiers Energy Res., 6:132. DOI: 10.3389/fenrg.2018.0 0132.
  16. Li, L. and K. Chi. 2021. A comparative study Scene-desmus dimorphus cultured with synthetic and actual wastewater. Water. 13:21. DOI: 10.3390/w 13213060.
  17. Jia, H. and Q Yuan. 2016. Removal of nitrogen from wastewater using microalgae and microalgae bacteria consortia. Cogent. Env. Sci., 2:1. DOI: 10.108 0/23311843.2016.1275089.
  18. Bharte, S. and K. Desai. 2018. Techniques for harvesting cell disruption and lipid extraction of microalgae for biofuel production. Biofuels. 12: 285-305. DOI: 10.1080/17597269.2018.1472977.
  19. Nivetha, B.J., et al. 2019. Utilization of sugarcane industry effluent for high value biomass and photosynthetic pigments production of Chlorella vulgaris (PSPDU06). Bioresour. Tech. Reports. 7: 100260. DOI: 10.1016/j.biteb.2019.100260.
  20. Bayo, A.S., et al. 2020. Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefiery approach. Renew. Energy. 146: 188-195. DOI: 10.1016/j.renene.2019. 06.148.