PGPR: Strategies to Overcome Saline Stress under Sustainable Agriculture

IJEP 44(5): 437-444 : Vol. 44 Issue. 5 (May 2024)

Md. Tausif Alam, Surbhi Mandal, Yashasvi Shrivastava, Akanksha Gupta and Sadhna Chaturvedi*

ITM University Gwalior, School of Sciences, Department of Biotechnology and Microbiology, Gwalior – 474 001, Madhya Pradesh, India


Soil salinity is a major factor that limits productivity worldwide, affecting various physiological, biochemical and molecular responses in leguminous crops. Despite the presence of salt stress, plant growth-promoting rhizobacteria (PGPR) can still colonize the roots of plants and stimulate their growth. Salt-tolerant PGPR plays a crucial role in mitigating the effects of salinity stress on legume crops, with specific characteristics, such as hormone production, nitrogen fixation and phosphate solubilization. By protecting legumes from saline stress conditions, these bacteria can increase crop sustainability. Salinity stress generates osmotic stress and ion toxicity, which ultimately leads to the production of reactive oxygen species and reduces crop productivity. This stress also disturbs photosynthesis and other hormonal productions required for the survival of legume crops. This paper focus on the role of rhizobacteria in the growth crops under various salinity stress conditions, as well as the salinity stress tolerance mechanism and the strategies to increase crop production and promote sustainable agriculture to meet today’s food demand.


Salinity, Plant growth-promoting rhizobacteria, Sustainable agriculture


  1. Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review Plant Biol., 59: 651-681. DOI: 10.1146/annurev.arplant.59.03 2607.092911.
  2. Kaur, G. and M.S. Reddy. 2020. Plant growth-promoting rhizobacteria (PGPR) and salinity stress: An overview. Plant Growth Regulation. 90(3): 435-455. DOI: 10.1007/s10725-019-00546-3.
  3. Ashraf, M. and M.R. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Env. Experimental Botany. 59(2): 206-216. DOI: 10.1016/j.envexpbot.2005.12.006.
  4. Okon, Y. and Y. Kapulnik. 2013. Development and function of Azospirillum–root systems interactions. In Bacterial-fungal interactions. Springer, Berlin, Heidelberg. pp 41-57. DOI: 10.1007/978-3-642-33820-7_3.
  5. Chamkhi, I., et al. 2022. Legume-based intercropping systems promote beneficial rhizobacterial community and crop yield under stressing conditions. Ind. Crops Products. 183: 114958. DOI: 10.1016/j.indcrop.2022.114958.
  6. Khan, M.A., I.A. Ungar and A.M. Showalter. 2000. Effects of sodium chloride treatments on growth, water relations and ion accumulation of lettuce and weeds. J. Plant Nutr., 23(9): 1273-1286. DOI: 10.1080/01904160009382180.
  7. Munns, R. 2005. Genes and salt tolerance: Bringing them together. New Phytol., 167(3): 645-663. DOI: 10.1111/j.1469-8137.2005.01487.x.
  8. Qadir, M., et al. 2014. Economics of salt-induced land degradation and restoration. Natural Resour. Forum. 38(4): 282-295. DOI: 10.1111/1477-894 7.12058.
  9. Sharma, B.R., P.S. Minhas and S. Singh. 2016. Water salinity management for sustainable agriculture. In Sustainable agriculture reviews. Springer, Cham. pp 57-88. DOI: 10.1007/978-3-319-26777-7_3.
  10. Musie, W. and G. Gonfa. 2023. Fresh water resource, scarcity, water salinity challenges and possible remedies: A review. Heliyon. 9(8): e18685. DOI: 10.1016/j.heliyon.2023.e18685.
  11. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Env., 25-40.
  12. Katerji, N., et al. 2000. Salt tolerance classification of crops according to soil salinity and to water stress day index. Agric. Water Manage., 43(1): 99-109.
  13. Thaker, P., N. Brahmbhatt and K. Shah. 2021. A review: Impact of salinity on ecological, agricultural and socio-economic concerns. Int. J. Adv. Res., 9: 979-986. DOI: 10.21474/IJAR01/13200.
  14. Rengasamy, P. 2006. World salinization with emphasis on Australia. J. Experimental Botany. 57(5): 1017-1023. DOI: 10.1093/jxb/erj108.
  15. Hussain, S.S., et al. 2019. Salinity stress in arid and semi-arid climates: Effects and management in field crops. In Climate change and agriculture. IntechOpen. DOI: 10.5772/intechopen.87982.
  16. FAO. 2018. Salinization of soils and water resour-ces: Causes, effects and management. Food and Agriculture Organization, Rome.
  17. Singh, A. 2021. Soil salinity: A global threat to sustainable development. Soil Use Manage., 38(1): 39-67. DOI: 10.1111/sum.12772.
  18. Costa, S.F., et al. 2018. Strategies to alleviate salinity stress in plants. In Salinity responses and tolerance in plants (vol 1). Ed V. Kumar, et al. Springer, Cham. pp 307-337. DOI: 10.1007/978-3-319-75671-4_12.
  19. Hasanuzzaman, M., et al. 2014. Potential use of halophytes to remediate saline soils. Biomed. Res. Int., 589341. DOI: 10.1155/2014/58934 PMID: 25110683.
  20. Lal, R. 2015. Soil conservation and management for sustainable agriculture. In Advances in soil science. Springer, Cham. pp 1-34.
  21. Qadir, M., S. Schubert and A. Ghafoor. 2008. Environmental and economic costs and benefits of drip irrigation: An analysis for Punjab, Pakistan. Agric. Water Manage., 95(2): 123-130. DOI: 10.10 16/j.agwat.2007.09.014.
  22. Shrivastava, P., and R. Kumar. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci., 22(2): 123-31. DOI: 10.1016/j.sjbs.2014.12.001.
  23. Fang, Y., et al. 2015. Climate change impacts on soil salinity: A study of the central coast of California. J. Hydrol., 523: 73-85. DOI: 10.1016/j.jhy drol.2015.01.021.
  24. Singh, A. 2020. Soil salinization management for sustainable development: A review. J. Env. Manage., 277: 111383. DOI: 10.1016/j.jenvman.2020. 111383.
  25. Liu, Y., et al. 2022. Rhizosphere microbes enhance plant salt tolerance: Toward crop production in saline soil. Comput. Struct. Biotech. J., 20: 6543–6551.
  26. Kumawat, K.C., et al. 2022. Plant growth-promoting rhizobacteria: Salt stress alleviators to improve crop productivity for sustainable agriculture development. Front. Plant Sci., 13: 1101862.
  27. Dodd, I.C. and F.P. Alfocea. 2000. Microbial amelioration of crop salinity stress. J. Experimental Botany. 63(9): 3415–3428.
  28. Spaepen, S., J. Vanderleyden and R. Remans. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Reviews. 31 (4): 425-448. DOI:10.1111/j.1574-6976.2007.0 0072.x.
  29. Orozco-Mosqueda, M.C., et al. 2022. Recent advances in the bacterial phytohormone modulation of plant growth. Plants (Basel). 12(3): 606.
  30. Glick, B.R. 2012. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica. pp 1-15.
  31. Backer, R., et al. 2018. Plant growth-promoting rhizobacteria: Context, mechanisms of action and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci., 9.
  32. Bhattacharyya, P.N. and D.K. Jha. 2012. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotech., 28(4): 1327-1350.
  33. Tsukanova, K.A., et al. 2017. Effect of plant growth-promoting rhizobacteria on plant hormone homeostasis. South African J. Botany. 113: 91-102. DOI: 10.1016/j.sajb.2017.07.007.
  34. Chiappero, J., et al. 2019. Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Ind. Crops Products. 139: 111553. DOI: 10.1016/j.indcrop.2019.111553.
  35. Gill, S.S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48(12): 909-930. DOI: 10.1016/j.plaphy.2010.08. 016.
  36. Wang, C.J., et al. 2012. Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLOS ONE.7. DOI: 10.1371/journal.pone.0052565.
  37. Shilev, S. 2020. Plant-growth-promoting bacteria mitigating soil salinity stress in plants. Appl. Sci., 10: 7326. DOI: 10.3390/app10207326.
  38. Reang, L., et al. 2022. Plant growth promoting characteristics of halophilic and halotolerant bacteria isolated from coastal regions of Saurashtra Gujarat. Sci. Rep., 12(1): 4699. DOI: 10.1038/s41598-022-08151-x.
  39. Arora, S., et al. 2014. Halophilic microbes for bio-remediation of salt affected soils. African J. Microbiol. Res., 8: 3070-3080. DOI: 10.5897/AJM R2014.6960.
  40. Kumar, V., et al. 2016. Saline soil bacterial diversity and ecosystem functions: Overview of a fragile ecosystem. In Halophiles: Biodiversity and sustainable exploitation. Springer, New Delhi. pp 139-154.
  41. Rengasamy, R., N. Amaresan and V. Jayakumar. 2015. Halophilic bacteria: A sustainable way to mitigate the salt stress in rice. In Microbial strategies for crop improvement. Springer, New Delhi. pp 167-178.
  42. Parida, A.K., A.B. Das and B. Mittra. 2018. Halophilic PGPRs stimulate growth and enhance tolerance of non-halophytic crops under salt stress. J. Plant Growth Regulation. 37(4): 1332-1344.
  43. Kumar, A., et al. 2020. Plant growth-promoting bacteria: Biological tools for the mitigation of salinity stress in plants. Front. Microbiol., 11: 1216. DOI: 10.3389/fmicb.2020.01216.
  44. Narayana, D.V. and R. Babu. 1983. Estimation of soil erosion in India. J. Irrig. Drain Eng.,109: 419-434. DOI: 10.1061/(ASCE)0733-94371983109.
  45. Kousik, A., et al. 2023. Impacts of salinity stress on crop plants: Improving salt tolerance through genetic and molecular dissection. Front. Plant Sci., 14. DOI: 10.3389/fpls.2023.1241736.
  46. Kumar, J., P.K. Srivastava and S.M. Prasad. 2021. Salt stress responses in plants: Perception, signaling, omics and tolerance mechanisms. Nova Science Publishers.
  47. Hasanuzzaman, M. and M. Fujita. 2022. Plant responses and tolerance to salt stress: Physiological and molecular interventions. Int. J. Mol. Sci., 23(9): 4810. DOI: 10.3390/ijms23094810.
  48. Mandal, S., et al. 2018. Current status of research, technology response and policy needs of salt-affected soils in India- A review. J. Indian Soc. Coastal Agric. Res., 36(2): 40-53.
  49. Menéndez, A.B. and O.A. Ruiz. 2021. Stress-regulated elements in Lotus spp., as a possible starting point to understand signalling networks and stress adaptation in legumes. Peer J., 9: e12110. DOI: 10.7717/peerj.12110.