Contribution of GIS and Simulations of Capacity of Hydraulic Structures to the Mapping of Flood Zones in the City of Agadir in Central Morocco

IJEP 44(5): 445-453 : Vol. 44 Issue. 5 (May 2024)

Abdellaali Tairi1*, Ahmed Elmouden1, Lhoussaine Bouchaou1,2 and Abderrahmane Wanaim3

1. Ibn Zohr University, Laboratory of Applied Geology and Geo-Environment, Faculty of Sciences, Agadir 80000, Morocco
2. Université Mohammed VI Polytechnique (UM6P), Morocco; International Water Research Institute (IWRI), Ben Guerir 43150, Morocco
3. Ibn Zohr University, Department of Earth Sciences, Faculty of Applied Sciences, Agadir, Morocco

Abstract

The hydraulic infrastructures of the city of Agadir are in poor condition and require major rehabilitation. They have been affected by floods and rainfall that have flooded most of the urban facilities of the city of Agadir. The present study aims at simulating and evaluating the capacity of two hydraulic works (Lahouar and Tassila) to face floods. These works are in the floodable black points of the city of Agadir. This study was carried out using modeling tools, empirical formulas and functions integrated into software dedicated to geographic information systems (GIS) and by exploiting climatic, hydrological, topographic, digital terrain model, geological data, etc. The simulated project flows were estimated using the rational method. The hydraulic capacity of two structures was simulated using the Culvert Master software. The simulation results for two hydraulic structures, Lahouar and Tassila, show that Tassila structure is powerless against the project flow (Q10) with a return time of 10 years, while Lahouar withstands the flow (Q10 and Q20) at 10 and 20 years return time and shows no flow (Q100) for the 100 years return time. These results can be used not only for flood risk prevention but also for the management of urban sewerage systems.

Keywords

Simulation, Floods, Lahouar, Tassila, GIS, DEM, Flow, Return time

References

  1. Ambroggi, R. 1963. Geological study of the southern slope of the Western High Atlas and the Sous plain. PhD. Thesis. Editions of the Geology Division, Rabat.
  2. Di Baldassarre, G., et al. 2013. Socio-hydrology: Conceptualising human-flood interactions. Hydrol. Earth System Sci., 17: 3295-3303. DOI: 10.5194/hess-17-3295-2013.
  3. Bennani, O., et al. 2019. Flood hazard mapping using two digital elevation models: Application in a semi-arid environment of Morocco. European Sci. J., 15 (33): 338 359. DOI: 10.19044/esj.2019.v1 5n33p338.
  4. Ikirri, M., et al. 2021. Application of HEC-RAS/WMS and FHI models for extreme hydrological events under climate change in the Ifni river arid watershed from Morocco (chapter 14). In Climate and landuse impacts on natural and artificial systems: Mitigation and adaptation. Ed M.M. Nistor. Elsevier. pp 251–270. DOI: 10.1016/B978-0-12-822184-6.00008-9.
  5. Echogdali, F.Z., et al. 2022. Flood hazard and susceptibility assessment in a semi-arid environment: A case study of Seyad basin, south of Morocco. J. African Earth Sci., 196: 104709. DOI: 10.1016/j.jafrearsci.2022.104709.
  6. Chen, Y., et al. 2012. Socio-economic impacts on flooding: A 4000-year history of the Yellow river, China. AMBIO. 41: 682-698. DOI: 10.1007/s1328 0-012-0290-5.
  7. Ikirri, M., et al. 2022. Flood hazard index application in arid catchments: Case of the Taguenit Wadi watershed, Lakhssas, Morocco. Land. 11: 1178. DOI: 10.3390/land11081178.
  8. Abioui, M., et al. 2023. GIS for watershed characterization and modelling: Example for the Taguenit river (Lakhssas, Morocco). In Water, land and forest susceptibility and sustainability: Geospatial approaches and modelling. Ed U. Chatterjee, B. Pradhan, S. Kumar, S. Saha and M. Zakwan. Elsevier, Amsterdam. pp 61-85.
  9. Diaconu, D.C., R. Costache and M.C. Popa. 2021. An overview of flood risk analysis methods. Water. 13: 174. DOI: 10.3390/w13040474.
  10. Rahmati, O., H. Zeinivand and M. Besharat. 2016. Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomat. Nat. Hazards Risk. 7(3): 1000-1017. DOI: 10.10 80/19475705.2015.1045043.
  11. Chapi, K., et al. 2017. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Env. Modelling Software. 95: 229-245. DOI: 10.1016/j.envsoft.2017.06.012.
  12. Moghadam, H.S., et al. 2018. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. J. Env. Manage., 217: 1-11. DOI: 10.1016/j.jenvman.2018.03.089.
  13. El Alaoui El Fels, A., et al. 2018. Flood frequency analysis and generation of flood hazard indicator maps in a semi-arid environment : case of Ourika watershed (Western High Atlas, Morocco). J. African Earth Sci., 141: 94–106. DOI: 10.1016/j.jafrearsci. 2018.02.004.
  14. Wanaim, A., et al. 2022. Contribution of GIS to the mapping of the sensitivity of the flood’s hybrid multi-criteria decision approach: Example of the Wadi Tamlest watershed (Agadir, Morocco). In Soil-water, agriculture and climate change: Exploring linkages. Ed S.K. Dubey, et al. Springer International Publishing, Cham. pp 309–328. DOI: 10.1007/978-3-031-12059-6_16.
  15. Bouaakkaz, B., et al. 2018. Flood risk management in the Souss watershed. E3S Web Conf., 37: 04005.
  16. Tairi, A., et al. 2020. Modelling soil using remote sensing and GIS in Tifnout Askaoun watershed, southern Morocco. Indian J. Env. Prot., 40: 243-252.
  17. Tairi, A., et al. 2021. Mapping soil erosion-prone sites through GIS and remote sensing for Tifnout Askaoun watershed, southern Morocco. Arabian J. Geosci., 14: 811. DOI: 10.1007/s12517-021-0 7009-2.
  18. Brath, A., A. Montanari and G. Moretti. 2006. Assessing the effect on flood frequency of landuse change via hydrological simulation (with uncertainty). J. Hydrol., 324: 141-153. DOI: 10.1016/j.jhydrol.2005.10.001.
  19. Istomina, M.N., A.G. Kocharyan and I.P. Lebdeva. 2005. Floods: Genesis, socio-economic and environmental impacts. Water Resour., 32: 349-358. DOI: 10.1007/s 11268-005-0045-9.
  20. Sheng, J. and J.P. Wilson. 2009. Watershed urbanization and changing flood behaviour across the Los Angeles metropolitan region. Nat. Hazards. 48: 41-57. DOI: 10.1007/s1069-008-9241-7.
  21. Kazakis, N., I. Kougias and T. Patsialis. 2015. Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: Application in Rhodope–Evros region, Greece. Sci. Total Env., 538: 555–563. DOI: 10.1016/j.scitotenv.2015.08.055.
  22. Luo, Z. and M. Peng. 2012. Hydrology and hydraulic analysis for a drainage rehabilition project on interstate highway 80 in California. In Watershed management 2010: Innovations in watershed management under land use and climate change. pp 620-630. DOI: 10.1061/41143 (394)57.
  23. Tairi, A., A. Elmouden and M. Aboulouafa. 2018. Modelling floods risk using GIS in Agadir, Morocco. Americam J. Eng. Res., 7: 34–44.
  24. Duffaud, F., et al. 1962. Geological map of the Agadir region. Editions Marcus, Paris, France.
  25. Ettachfini, E.M., N. El Kamali and M. Bilotte. 1989. Bio and lithostratigraphic characterization attempt of sedimentary sequences in the Middle Cretaceous of the Imi N’Tanout region (Western High Atlas, Morocco). Sci. Geol. Bull., 84: 71–81.
  26. Soulaimani, A. and H. Ouanaimi. 2011. Circuit 4: Anti-Atlas and Haut Atlas, western circuit (vol 3). Ministry of Energy and Mines, Water and Environment, Mining Development Directorate, Kingdom of Morocco. pp 9–72.
  27. Saidi, M.E., et al. 2010. The floods of the Ourika Wadi (High Atlas, Morocco): Extreme events in a semi-arid mountain context. Common. Geológicas. 97: 113-128.
  28. Ouajhain, B., et al. 2009. Paleogeographic control of the Jurassic clay sedimentation of the Atlas basin of Essaouira (Western High Atlas, Morocco). Common. Geológicas. 96: 51–66.
  29. Kuichling, E. 1889. The relation between the rainfall and the discharge of sewers in populous districts. Trans. American Soc. Civ. Eng., 20: 1–56.
  30. Yacoubi, M., Z. Chahine and A. Aggad. 1996. The concentration time of small rural watersheds. Revue Marocaine Genie Civil. 62: 69-74.
  31. Erazo, W.S., et al. 2018. Velocity and time of concentration of a basin- A renewed approach applied in the Rio Grande basin, Ecuador. IOP Conf. Ser. Earth Env. Sci., 191: 012117. DOI: 10.1088/1755-1315/191/1/012117.
  32. Mohymont, B. and G.R. Demaree. 2006. Intensity-duration-frequency curves for precipitation at Yangambi, Congo, derived by means of various models of Montana type. Hydrol. Sci. J., 51: 239-253. DOI: 10.1623/hysj.51.2.239.