IJEP 44(5): 473-480 : Vol. 44 Issue. 5 (May 2024)
M.D. Kokate and Ravi Kant Pareek*
Vivekananda Global University, Department of Civil Engineering, Jaipur – 303 012, Rajasthan, India
Abstract
Nashik is one of Maharashtra’s most populous districts in terms of size and population. The present study aims to define the flood detection and risk assessment pattern for Nashik, located on the Godavari river’s bank in northwest Maharashtra. Flooding occurs when there is too much rain in rivers and streams. This paper represents a variety of approaches, methodologies and software to compute flood prediction, analysis and risk assessment for Nashik city. Floods destroy infrastructure, living things and the environment. The problem regarding floods is solved by identifying any research gaps that must be filled before continuing to assess the pertinent literature.
Keywords
Flood prediction, Analysis, Detection, Risk and hazard
References
- Haq, m., et al. 2012. Techniques of remote sensing and GIS for flood monitoring and damage assessment: A case study of Sindh province, Pakistan. Egyptian J. Remote Sensing Space Sci., 15(2): 135-141.
- Satria, D., et al. 2019. Implementation of GSM based flood data communication in the flood disaster location information system. IOP Conf. Series Mater. Sci. Eng., 506: 012016.
- Shaoa, Z., et al. 2021. Spatio-temporal-spectral-angular observation model that integrate observation from UAV and mobile mapping vehicle for better urban mapping. Taylor & Francis Group.
- Bonacci, Ognem. 1983. Several methods for discharge measurements of floods. Hydrol. Sci. J., 28(4): 513-524.
- Nazir, F., et al. 2014. Flood detection/monitoring using adjustable histogram equalization technique. Sci. World J., 809636. DOI: 10.1155/2014/809 636.
- Lin, Y.N., et al. 2019. Urban flood detection with Sentinel-1 multi-temporal synthetic aperature radar (SAR) observations in a Bayesian framework: A case study for Hurricane Matthew. Remote Sensing. 11(15). DOI: 10.3390/rs11151778.
- Samantaray, S. and A. Sahoo. Estimation of flood frequency using statistical method : Mahanadi river basin, India. H2Open J., 3 (1): 189–207.
- Reksten, J.H., A.B. Salberg and R. Solberg. 2019. Flood detection in Norway based on Sentinel-1 SAR imagery. Int. Arch. Photogrammetry Remote Sensing Spatial Inf. Sci., XLII-3/W8: 349-355.
- Lee, G., K.S. Jun and E.S. Chung. 2013. Integrated multi-criteria flood vulnerability approach using fuzzy TOPSIS and Delphi technique. Natural Hazards Earth System Sci., 13: 1293-1312.
- Mengistu, T.D., et al. 2022. Regional flood frequency analysis for sustainable water resources management of Genale-Dawa river basin, Ethiopia. Water. 14(4): 637.
- Sanders, R. and S. Tabuclu. 2000. Decisioin support system for flood risk analysis for the river Thames, United Kingdom. American Soc. Photogrammetry Remote Sensing. 66(10): 1185-1193.
- Hong, Y., et al. 2008. Applications of TRMM-based multisatelite precipitation estimation for global runoff simulation: Prototying a global flood monitoring system. In Satellite rainfall applications for surface hydrology. Ed M. Gebremichael and F. Hossain. Springer, Dordrecht. pp 245–265.
- Jahdav, M.S., et al. 2018. Flood frequency analysis of high magnitude riverine flood of upper Godavari basin. Int. J. Res. Anal. Reviews. 6(1).
- Lavhate, S., et al. 2022. IOT based early flood detection and preventive measurements. Int. J. Adv. Res.Sci.Comm. Tech., 2(1): 84-91.
- Chakarvarty, M.J., et al. 2018. Flood frequency analysis using gumbel extreme value distribution method: A case study of the Dikrong river, northeast India. Paipex Indian J. Res., 7(11).
- Saeed, S.F., et al. 2020. Assessment of flood frequency using maximum flow records for the Euphrates river, Iraq. IOP Conf. Series Mater. Sci. Eng., 1076(1): 012111.
- Rizwan, M., et al. 2018. Evaluation of various probability distributions for deriving design flood featuring right-tail events in Pakistan. Water. 10(11): 1603.
- Ogras, S. and F. Onen. 2020. Flood analysis with HEC-RAS: A case study of Tigris river. Hindawi Adv. Civil Eng., 6131982.
- Mason, D.C., et al. 2016. Improving the TanDEM-X digital elevation model for flood modelling using flood extents from synthetic aperture radar images. Remote Sensing Env., 173: 15-28.
- Kuglera, Z., et al. Towards a near-real time global flood detection system (GFDS). MDPI Publication.
- Tanim, A.H. 2022. Flood detection in urban areas using satellite imagery and machine learning. Water. 14(7): 1140.
- Farahmand, H., Y. Xu and A. Mostafavi. 2021. A spacial temporal graph deep learning model for urban flood nowcasting leveraging heterogenous community features. Sci. Reports. 13: 6768.
- Buta, C., G. Mihai and M. Stanescu. 2022. Flood risk assessment based on flood hazard and vulnerability indexes. Ovidius University Annals Series Civil Eng., 22(1): 127-137.
- Al-Ghamd, K.A., et al. 2012. GIS evaluation of urban growth and flood analysis. J. African Earth Sci.
- Sharma, S.V.S., et al. 2017. Flood risk assessment using multi-criteria analysis: A case study from Kopili river basin, Assam, India. Geomatics Natural Hazards Risk. 9(1): 79-93.
- Anees, M.T., et al. 2016. Numerical modelling techniques for flood analysis. J. African Earth Sci., 124: 478-486.
- Goumrasa, A., et al. 2021. Flood hazard susceptibility assessment in Chiffa wadi watershed and along the first section of Algeria north-south highway using GIS and AHP method. Appl. Geomatics. 13: 565–585.
- Dottori, F., M.L.V. Martina and R. Figueiredo. 2016. A methodology for flood susceptibility and vulnerability analysis in complex flood scenarios. J. Flood Risk Manage., 11(S2): S632-S645.
- Vojtel, M. and J. Vojtekov. 2016. Flood hazard and flood risk assessment at the local spatial scale: A case study. Geomatics Natural Hazards Risk. 7 (6): 1973-1992.
- Gaurav, S.I., A.I. Shafia and H.A.I. Bharath. 2018. Urban growth pattern with urban flood and temperature vulnerability using AI: A case study of Delhi. IOP Conf. Series Earth Env. Sci., 169(1): 012092.
- Rincon, D., U.T. Khan and C. Armenakis. 2018. Flood risk mapping using GIS and multi-criteria analysis: A greater Toronto area case study. Geosci., 8(8): 275.
- Guo, K., M. Guan and D. Yu. 2020. Urban surface water flood modelling- A comprehnsive review of current models and future challenges. Hydrol. Earth System Sci., 25: 2843–2860.
- Poudel, K., K. Basnet and B. Sherehan. 2021. Hydrological and hydraulic modelling for flood analysis: A case study for Modi catchment. Int. J. Eng. Res. Tech., 10(8).
- Kumar, P.S. 2017. A case study on flood frequency analysis. Int. J. Civil Eng. Tech., 8(4):1762-1767.
- Elsheikh, R.F.A., S. Ouerghi and A.R. Elhag. 2015. Flood risk map based on GIS and multi-criteria techniques (case study Terengganu, Malaysia). J. Geogr. Inf. System. 7: 348-357.
- Kumar, D. and R.K. Bhattachariya. 2020. Review of different methods and techniques used for flood vulnerability analysis. Natural Hazards Earth System Sci., DOI: 10.5194/nhess-2020-297.
- Njoku, C.G. 2018. A GIS multi-criteria evaluation for flood risk vulnerability mapping of Ikon local government area, Cross River state. J. Geogr. Env. Earth Sci. Int., 15(2): 1-17.
- Goel, S.R. 2020. Flood damage analysis using machine learning technique. International conference on Smart sustainable intelligent computing and application under ICITETM. 173: 78-85.
- Idowu, D. and W. Zhou. 2021. Landuse and land cover change assessment in the context of flood hazard Lagos state, Nigeria. Water. 13(8): 1105.
- Ullah, S. 2016. Flood modelling and simulations using hydrodynamic model and ASTERDEM- A case study of Kalpani river. Saudi Soc. Geosci., 9: 439.
- Singh, A. 2021. A review of modelling methodogies for food source area (FSA) identification. Natural Hazards. 107: 1047-1068.