Microscopic Study of Sputum Sample to Determine Environmental Pollutants among Industrial Population of Bilaspur City

IJEP 45(7): 609-619 : Vol. 45 Issue. 7 (July 2025)

Sanjida Shabnam, P. Vishnupriya, T.L. Chandra and Sudhir Yadav*

Guru Ghasidas Vishwavidyalaya (Central University), Department of Forensic Science, School of Interdisciplinary Education and Research, Bilaspur – 495 009, Chhattisgarh, India

Abstract

This study aims to investigate how microscopic sputum analysis can potentially aid in identifying environmental toxins associated with respiratory issues, thereby enabling the development of more effective management strategies to mitigate the impact of pollution on the lungs. This project employed a mixed-methods technique, combining both quantitative and qualitative research. The study included 50 participants from various socio-economic backgrounds. A structured questionnaire was created to collect various data from participants. The sputum specimens were examined under a bright field microscope. The findings indicated the presence of foreign particles within the material. Microscopic investigation of the material using Giemsa stain yielded correct results regarding presence of external pollutants in the sample. Microscopic analysis is an effective technique for investigating the intricate interactions between environmental contaminants and respiratory hazards. Furthermore, microscopy offers a cost-effective and efficient method for assessing respiratory health in individuals exposed to pollutants, enabling early identification and intervention to prevent the development of severe respiratory disorders.

Keywords

Air pollution, Air borne particles, Health hazards, Respiratory risks, Sputum analysis

References

  1. Manisalidis, I., et al. 2020. Environmental and health impacts of air pollution: a review. Frontiers public health. 8: 14.
  2. Ferkol, T. and D. Schraufnagel. 2014. The global burden of respiratory disease. Annals American Thoracic Soc., 11(3): 404-406.
  3. Guzman, N.A. and A. Guzman. 2024. Human sputum proteomics: Advancing non-invasive diagnosis of respiratory diseases with enhanced biomarker analysis methods. Int. J. Translational Medicine. 4(2): 309-333.
  4. Laumbach, R., Q. Meng and H. Kipen. 2015. What can individuals do to reduce personal health risks from air pollution? J. thoracic disease. 7(1): 96.
  5. Kolawole, A. S. and A.O. Iyiola. 2023. Environmental pollution: Threats, impact on biodiversity and protection strategies. In Sustainable utilization and conservation of Africa’s biological resources and environment. Springer Nature, Singapore. pp 377-409.
  6. Brusseau, M. L. and J. F. Artiola. 2019. Chemical contaminants. InEnvironmental and pollution science. Academic Press. pp 175-190.
  7. Mondal, S., S. P. Singh and Y. K. Lahir. 2022. Emerging trends in environmental biotechnology. CRC Press.
  8. Shao, L., et al. 2022. A review of atmospheric individual particle analyses: Methodologies and applications in environmental research. Gondwana Res., 110: 347-369.
  9. Zhang, R., et al. 2015. Formation of urban fine particulate matter. Chem. reviews. 115(10): 3803-3855.
  10. Pfeiffer, R. 2013. Sampling for PM10and PM2.5particulates. Micrometeorology in Agricultural Systems (2005), Agronomy monograph no. 47: 227-245.
  11. Liang, C.S., et al. 2016. Review on recent progress in observations, source identifications and countermeasures of PM2.5. Env. Int., 86: 150-170.
  12. Kumar, S.D. and A. Dash. 2018. Seasonal variation of air quality index and assessment. Global J. Env. Sci. Manage., 4(4): 483-492.
  13. Gulia, S., et al. 2018. Urban local air quality management framework for non-attainment areas in Indian cities. Sci. Total Env., 619: 1308-1318.
  14. Wei, J., et al. 2023. First close insight into global daily gapless 1 km PM2.5pollution, variability and health impact. Nature communications. 14(1): 8349.
  15. Abbasi-Kangevari, M., et al. 2023. Effect of air pollution on disease burden, mortality and life expectancy in North Africa and the Middle East: a systematic analysis for the global burden of disease study 2019. Lancet Planetary Health. 7(5): e358-e369.
  16. The World Bank. 2023. Air quality management in Tajikistan.
  17. Kang, N., et al. 2024. Burden of child anemia attributable to fine particulate matters brought by sand dusts in low and middle-income countries. Env. Sci. Tech., 58(29): 12954-12965.
  18. Mangaraj, P., et al. 2024. Weak coupling of obser-ved surface PM2.5in Delhi-NCR with rice crop residue burning in Punjab and Haryana. npj Climate Atmos. Sci., 8: 18.
  19. Gurjar, B.R., K. Ravindra and A.S. Nagpure. 2016. Air pollution trends over Indian megacities and their local-to-global implications. Atmos. Env., 142: 475-495.
  20. Brèeski, I. and A.Vaseashta. 2021. Environmental forensic tools for water resources. In Water safety, security and sustainability. Ed A. Vaseashta. pp 335-372.
  21. Richards, N.L., et al. 2021. The role of conservation dog detection and ecological monitoring in supporting environmental forensics and enforcement initiatives. InWildlife biodiversity conservation. Springer, Cham. pp 287-322.
  22. Aragòn-Correa, J. A., A. A. Marcus and D. Vogel. 2020. The effects of mandatory and voluntary regulatory pressures on firms’ environmental strategies: A review and recommendations for future research. Academy Manage. Annals. 14(1): 339-365.
  23. Petrisor, I. G. 2014. Environmental forensics fundamentals: A practical guide. CRC Press.
  24. Sullivan, P.J., F.J. Agardy and R.K. Traub. 2000. Practical environmental forensics: Process and case histories. John Wiley and Sons.
  25. Head, B. W. 2007. Community engagement: Participation on whose terms? Australian j. political sci., 42(3): 441-454.
  26. Morrison, J., et al. 2018. Field-based detection of biological samples for forensic analysis: Established techniques, novel tools and future innovations. Forensic Sci. Int., 285: 147-160.
  27. Ragula, A. and K. K. Chandra. 2020. Tree species suitable for roadside afforestation and carbon sequestration in Bilaspur, India. Carbon Manage., 11(4): 369-380.
  28. Salih, M.M., A. M. E. Raid and A. H. E. Nabi. 2017. Environmental pollution and cytological changes in sputum samples taken from individuals living in the countryside and industrial area in Sudan. IP Arch. Cytol. Histopathol. Res., 2(4): 85-89.
  29. Hyland, M. E. 2022. Chronic respiratory diseases–Psychosocial factors and management. Routledge.
  30. Dutta, A., et al. 2013. Changes in sputum cytology, airway inflammation and oxidative stress due to chronic inhalation of biomass smoke during cooking in premenopausal rural Indian women. Int. j. hygiene env. health. 216(3): 301-308.
  31. Schleicher, F. N., et al. 2013. Distribution of sputum cellular phenotype in a large asthma cohort: Predicting factors for eosinophilic vs neutrophilic infla-mmation. BMC pulmonary medicine. 13: 1-8.
  32. Inoue, K. I. and H. Takano. 2011. Biology of diesel exhaust effects on allergic pulmonary inflammation. Yakugaku Zasshi. 131(3): 367-371.
  33. Ohtani, T., et al. 2005. Cellular basis of the role of diesel exhaust particles in inducing Th2-dominant response. J. Immunol., 174(4): 2412-2419.
  34. Villeneuve, P. J., et al. 2015. Long-term exposure to fine particulate matter air pollution and mortality among Canadian women. Epidemiol., 26(4): 536-545.
  35. Merrill, W.W., et al. 1992. Association between acute inflammatory cells in lavage fluid and bronchial metaplasia. Chest. 102(3): 688-693.
  36. Madison, R., A. A. Afifi and C. Mittman. 1984. Respiratory impairment in coke oven workers: Relationship to work exposure and bronchial inflammation detected by sputum cytology. J. Chronic Diseases. 37(3): 167-176.
  37. Schultz, E.S., A.A. Litonjua and E. Melén. 2017. Effects of long-term exposure to traffic-related air pollution on lung function in children. Curr. allergy Asthma reports. 17: 1-13.
  38. Wang, M., et al. 2015. Air pollution and lung function in Dutch children: a comparison of exposure estimates and associations based on landuse
    regre-ssion and dispersion exposure modelling approaches. Env. health perspectives. 123(8): 847-851.
  39. Djuricic, S. and P. Plamenac. 1999. The effect of sex factors on cytologic changes in the sputum of young adults exposed to urban air pollution. Srpski Arhiv Celokupno Lekarstvo. 127(1-2):16-20.
  40. Fung, A. O. and N. Mykhaylova. 2014. Analysis of airborne biomarkers for point-of-care diagnostics. J. laboratory automation. 19(3): 225-247.
  41. IQAir. 2023 World air quality report: Region and city PM2.5 ranking. Available at: https://www. green peace.org/static/planet4-india-stateless/2024/03/44a856c8-2023_world_air_quality_report.pdf.