Bacterial Biofilms And Bioremediation

IJEP 41(5): 528-535 : Vol. 41 Issue. 5 (May 2021)

De-Hwa Khoo, Pooja Shivanand* and Hussein Taha

University Brunei Darussalam, Environmental and Life Sciences, Faculty of Science, Gadong BE1410,
Brunei

Abstract

In this review, the importance of biofilm formation in promoting greater survival, adaptation and propagation is explored. The focus will be given to the mechanisms of bacterial biofilm in the bioremediation of hydrocarbons, such as polycyclic aromatic hydrocarbons (PAHs), as bacteria is known to be one of the top degraders. Due to the increasing population utilizing petroleum and its products, the demand for petroleum increases. As a result, petroleum is slowly turning into the most widespread pollutants to the environment. Using biofilms as a tool may enhance the biodegradation processes as the communities developed structures for protection from harsh surrounding environments, quorum sensing (QS), horizontal gene transfer (HGT), availability of nutrients (from the environment and within the communities) and the persistence in metabolic rates to increase the cells’ stability and resilience. A major limitation to successful bioremediation is the bioavailability of contaminant to the degradative cells. However, this is not a problem for the biofilm communities as the development of strategy such as chemotaxis allows the movement of the cells towards the contaminants. This paper also discussed the use of biofilms for wastewater treatment, acid-mine drains (AMD) treatment and bioremediation of heavy metals.

Keywords

Biofilm, Bioremediation, Biodegradation, Hydrocarbons, Bacterial survival

References

  1. Ukiwe, L.N., et al. 2013. Polycyclic aromatic hydrocarbons degradation techniques : A review. Int. J. Chem., 5(4):43-55.
  2. Samimi, S.V., R.A. Rad and F. Ghanizadeh. 2009. Polycyclic aromatic hydrocarbon contamination levels in collected samples from vicinity of a highway. Iran J. Env. Health Sci. Eng., 6(1):47-52.
  3. Dutta, S. and P. Singh. 2016. Chemotaxis of biofilm producing Pseudomonas spp. towards refined petroleum oil. J. Sci. Res., 8(2):199-207.
  4. El-Naggar, A.Y., et al. 2014. Petroleum in view of its classification, assay and analysis. Internatioal Science Congress Association, Indore, India.
  5. Gupte, A., et al. 2016. Bioremediation of polycyclic aromatic hydrocarbon (PAHs): A perspective. The Open Biotech. J., 10:363-378.
  6. Alrumman, S.A., D.B. Standing and G.I. Paton. 2015. Effects of hydrocarbon contamination on soil microbial community and enzyme activity. J. King Saud University Sci., 27(1):31-41.
  7. Meliani, A. and A. Bensoltane. 2014. Enhancement of hydrocarbons degradation by use of Pseudomonas. Petroleum Env. Biotech., 5(1):1-7.
  8. Abdel-Shafy, H.I. and M.S.M. Mansour. 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian J. Petroleum. 25:107-123.
  9. Bulder. 2008. Risk assessment on nickel, mineral oils, polycyclic aromatic hydrocarbons and volatile organic compounds in animal feed materials. Wageningen University and Research Centre, The Netherlands.
  10. Singh, R., D. Paul and R.K. Jain. 2006. Biofilms : Implications in bioremediation. Trends Microbial., 14(9):389-397.
  11. Davies, D.G., et al. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Sci., 280 (5361):265-268.
  12. Prakash, B., B.M. Veeragowda and G. Krishnappa. 2003. Biofilms : A survival strategy of bacteria. Current Sci., 85(9):1299-1307.
  13. Baker, B.J., et al. 2009. Insights into the diversity of cukaryotes in acid mine drainage biofilm communities. Appl. Env. Microbial., 75(7):2192-2199.
  14. Edwards, S.J. and B.V. Kjellerup. 2013. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products and heavy metals. Appl. Microbial. Biotech., 97(23):9909-9921.
  15. Costerton, J.W., P.S. Stewart and E.P. Greenberg. 1999. Bacterial biofilms : A common cause of persistent infections. Sci., 284:1318-1322.
  16. Wimpenny, J., W. Manz and U. Szewzyk. 2000. Heterogeneity in biofilms. FEMS Microbiol Reviews. 24:661-671.
  17. Jachlewski, S., et al. 2015. Isolation of extracellular polymeric substances from biofilms of the thermoacidophilic archaeon Sulfolobus acidoc-aldarius. Frontiers Bioeng. Biotech., 3:1-11.
  18. Dunne, W.M. and W.M. Dunne. 2002. Bacterial adhesion : Seen any good biofilms lately ? Clinical Microbiol. Reviews. 15(2):155-166.
  19. Simoes, M., L.C. Simoes and M.J. Vieira. 2009. Species association increases biofilm resistance to chemical and mechanical treatments. Water Res., 43(1):229-237.
  20. Kumar, M.A., K.T.K. Anandapandian and K. Parthiban. 2011. Production and characterization of exopolysaccharides (EPS) from biofilm forming marine bacterium. Brazilian Archives Biol. Tech., 54(2):259-265.
  21. Banerjee, P., M. Singh and V. Sharma. 2015. Biofilm formation : A comprehensive review. Int. J. Pharma Res. Health Sci., 3(2):556-560.
  22. Gunn, J.S., L.O. Bakaletz and D.J. Wozniak. 2016. What’s on the outside matters : The role of the extracellular polymeric substance of Gram negative biofilms in evading host immunity and as a target for therapeutic intervention. J. Biol. Chem., 291 (24):12538-12546.
  23. Dang, H. and C.R. Lovell. 2016. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev., 80(1):91-138.
  24. Hammer, B.K. and B.L. Bassler. 2003. Quorum sensing controls biofilm formation in Vibrio cholerae. Molecular microbiol., 50:101-114.
  25. Bueno, J. 2018. Biofilm environmentome : A survival. J. Biochem., 1(1):18-19.
  26. Burmeister, A.R. 2015. Horizontal gene transfer. Evolution Medicine Public Health. 2015:193-194.
  27. Skippington, E. and M.A. Ragan. 2011. Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol. Review. 35:707-735.
  28. Perumbakkam, S., T.F. Hess and R.L. Crawford. 2006. A bioremediation approach using natural transformation in pure-culture and mixed-population biofilms. Biodegradation. 17:545-557.
  29. Stalder, T. and E. Top. 2016. Plasmid transfer in biofilms : A perspective on limitations and opportunities. NPJ Biofilms Microbiomes. DOI:10.1038/ npjbiofilms.2016.22.
  30. Mitra, A. and S. Mukhopadhyay. 2016. Biofilm mediated decontamination of pollutants from the environment. AIMS Bioeng., 3(1):44-59.
  31. Zubair, M., et al. 2014. Formation and significance of bacterial biofilms. Int. J. Curr. Microbiol. Appl. Sci., 3(12):917-923.
  32. Kokare, C.R., et al. 2009. Biofilm : Importance and applications. Indian J. Biotech., 8:159-168.
  33. Romling, U., et al. 2014. Microbial biofilm formation : A need to act. J. Int. Medicine. 276 (2):98-100.
  34. Tuson, H.H. and D.B. Weibel. 2013. Bacteria-surface interactions. Soft matter., 9(17):4368-4380.
  35. Heilmann, C. and F. Gotz. 2010. Cell-cell communication and biofilm formation in Gram-positive bacteria. In Bacterial signaling. Wiley-VCH Verlag GmbH and Co., Weinbeim. pp 7-22.
  36. Maric, S. and J. Vranes. 2007. Characteristics and significance of microbial biofilm formation. Periodicum Biologorum. 109(2):115-121.
  37. Garrett, T.R., M. Bhakoo and Z. Zhang. 2008. Bacterial adhesion and biofilms on surfaces. Progress Natural Sci., 18(9):1049-1056.
  38. Sreeremya, S. 2017. A review on microbial film. Int. J. Adv. Res. Develop., 2(2):7-10.
  39. Toyofuku, M., et al. 2015. Environmental factors that space biofilm formation. Biosci. Biotech. Biochem., 80(1):7-12.
  40. Arampatze, S.I., G. Giannoglou and E. Diza. 2011. Biofilm formation : A complicated microbiological process. Aristotle University Medical J., 38(2):21-29.
  41. Bisht, S., et al. 2015. Bioremediation of polycyclic hydrocarbons (PAHs) using rhizosphere technology. Brazilian J. Microbiol., 46(1):7-21.
  42. Nkem, B.M., et al. 2016. Isolation, identification and diesel-oil biodegradation capacities of indigenous hydrocarbon-degrading strains of Cellulo-simicrobium cellulans and Acinetobacter baumannii from tarball at Terengganu beach, Malaysia. Mar. Poll. Bull., 107(1):261-268.
  43. Gkorezis, P., et al. 2016. The interaction between plants and bacteria in the remidiation of petroleum hydrocarbons : An environmental perspective. Frontiers Microbiol., 7:1-27.
  44. Abatenh, E., et al. 2017. Application of microorganisms in bioremediation-review. J. Env. Microbiol., 1(1):2-9.
  45. Paul, D., et al. 2005. Accessing microbial diversity for bio-remediation and environmental restoration. Trends Biotech., 23(3):135-142.
  46. Srivastava, J., et al. 2014. Advance in microbial bioremediation and the factors influencing the process. Int. J. Env. Sci. Tech., 11:1787-1800.
  47. Grimm, A.C. and C.S. Harwood. 1997. Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl. Env. Microbiol., 63(10):4111-4115.
  48. Mangwani, N., S. Kumari and S. Das. 2016. Bacterial biofilms and quorum sensing : Fidelity in bioremediation technology. Biotech. Genetic Eng. Reviews. 32(1-2):1-31).
  49. Dasgupta, D., R. Ghosh and T.K. Sengupta. 2013. Biofilm-mediated enhanced crude oil degradation by newly isolated Pseudomonas species. Int. Scholarly Res. Notices. DOI:10.5402/2013/250749.
  50. Sfaelou, S., H.K. Karapanagioti and J. Vakros. 2015. Studying the formation of biofilms on supports with different polarity and their efficiency to treat wastewater. J. Chem. DOI:10.1155/2015/734384.
  51. Sehar, S. and I. Naz. 2016. Role of the biofilms in wastewater treatment. In Microbial biofilms : Importance and applications. Ed D. Dhanasekaran and N. Thajuddin. Intech Open.
  52. Lear, G., et al. 2009. Biofilm bacterial community structure in streams affected by acid mine drainage. Int. J. Sci. Res. Sci. Tech., 75(11):3455-3460.
  53. Nancucheo, I., et al. 2017. Recent developments for remediating acidic mine waters using sulphidogenic bacteria. BioMed Res. Int. DOI:10: 1155/2017/7256582.
  54. Tabak, H.H. and R. Govind. 2003. Advances in biotreatment of acid mine drainage and biorecovery of metals : 2. Membrane bioreactor system for sulphate reduction. Biodegradation. 14:437-452.
  55. Villegas, L.C., et al. 2018. Removal of heavy metals from aqueous solution by biofilm-forming bacteria isolated from mined-out soil in Mogpog, Marinduque, Philippines. Philippine Sci. Letters. 11:18-27.
  56. Ogbuagu, D.H., J.D. Njoku and A.A. Ayoade. 2011. Trends in macrobenthal biotypes of Imo river in a Nigerian delta region. J. Biodiversity Env. Sci., 1(4):22-28.
  57. Azizi, S., I. Kamika and M. Tekere. 2016. Evaluation of heavy metal removal from wastewater in a modified packed bed biofilm reactor. PLoS ONE. 11(5):1-13.
  58. Teitzel, G.M. and M.R. Parsek. 2003. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl. Env. Miccrobiol., 69(4):2313-2320.
  59. Abbas, S.H., et al. 2014. Biosorption of heavy metals : A review. J. Chem. Sci. Tech., 3(4):74-102.
  60. Yu, P., et al. 2016. Influence of surface properties on adhesion forces and attachment of Streptococcus mutans to zirconia in-vitro. BioMed Res. Int. DOI:10.1155/2016/8901253.
  61. Satheesh, S. and S. Wesley. 2010. Biofilm development on acrylic coupons during the initial 24
    hour period of submersion in a tropical coastal environment. Oceanol. Hydrobiol. Studies. 39:27-
    38.
  62. Marsden, A.E., et al. 2016. Impact of salt and nutrient content on biofilm formation by Vibrio fischeri. PLoS ONE. 12(1):1-19.
  63. Fazli, M., et al. 2014. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Env. Microbiol., 16(7):1961-1981.
  64. Saleh, P.A.A. 2014. Bacterial quorum sensing and biofilm formation. Bangladesh J. Med. Microbiol., 8(1):1.
  65. Klauch, G., et al. 2018. Spatial organization of different sigma factor activities and c-di-GMP signalling within the three-dimensional landscape of a bacterial biofilm. Open Biol., 8:1-15.
  66. Ruberto, L., S.C. Vazquez and W.P.M. Cormack. 2003. Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. Int. Biodeter. Biodegrad., 52:115-125.
  67. Sawadogo, A., et al. 2014. Isolation and characterization of hydrocarbon degrading bacteria from wastewater in Ouagadougou, Burkina Faso. J. Env. Prot., 5:1183-1196.
  68. Laurelta, T.A., I. Mudiaga and D.F. Ogeleka. 2017. Bioremediation of diesel contaminated water using indigenous hydrocarbon degrading bacteria. Sci. Tech., 3(1):352-360.
  69. Mbachu, A.E., et al. 2014. Hydrocarbon degrading potentials in indigenous bacteria isolated from auto-mechanic workshop at Mgbuka-Nkpor, Nigeria. J. Global Biosci., 3(1):321-326.
  70. Roy, A.S., et al. 2014. Bioremediation potential of native hydrocarbon degrading bacterial strains in curde oil contaminated soil under microcosm study. Int. Biodeteri. Biodegrad., 94:79-89.
  71. Jesubunmi and C. Olubunmi. 2014. Isolation of oil-degrading micro-organisms in spent engine oil-contaminated soil. J. Biol. Agric. Healthcare. 4(25): 191-195.
  72. Nilesh, P.K. and P. Hardik. 2013. Isolation and screening of hydrocarbon degrading bacteria from soil near Kadi (Gujarat) region. Int. J. Res. Biosci., 2(4):10-16.