Approaches, Properties and Applications of Nanocomposite – A Review

IJEP 42(2): 209-217 : Vol. 42 Issue. 2 (February 2022)

M. Rajamehala1*, A. Kaviprabha1, B. Gopalakrishnan2 and A. Muthu Kumara Pandian1

1. Vivekanandha College of Engineering for Women, Department of Biotechnology, Elaiyampalayam – 637 205, Tamil Nadu, India
2. Annamalai University, Department of Chemical Engineering, Annamalai Nagar – 608 002, Tamil Nadu, India


Nanocomposite is a solid material where one of the stages has one, a couple of components under 100 nanometer or structure having nano-scale repeat isolates between the qualification arranges that make upto a material. This audit talks about the items, applications and mechanical improvements in polymer, earthenware and metal nano- composites. It is indicated that polymer nanocomposites and the materials utilized in their creation are industrially accessible and discovering applications in a few enterprises, including car, military and nourishment, due to their improved mechanical, electrical and warm properties. Fired and metallic nanocomposites are at a prior phase of advancement and a basic issue to determine is upgrading the scattering of nanomaterial in the networks.


Nanocomposite, Nanomaterial, Earthenware, Metal, Polymer


  1. Roy, R., et al. 1986. Alternative perspectives on ‘quasicrystallinity’: non-uniformity and nanocom-posites. Mater. Letters. 4(8-9):323-328.
  2. Schmidt, D., et al. 2002. New advances in polymer/layered silicate nanocomposites. Curr. Opinion Solid State Mater. Sci., 6(3):205-212.
  3. Gleiter, H. 1992. Materials with ultrafine microstructures : Retrospectives and perspectives. Nanostructured Mater., 1(1):1-19.
  4. Braun, T., et al. 1997. Nanoscience and nanote-chnology on the balance. Scientrometrics. 38(2): 321-325.
  5. Kamigaito, O. 1991. What can be improved by nanometer composites? J. Japan Soc. Powder Metal., 38:315-321.
  6. Iijima, S. 1991. Helical microtubes of graphitic carbon. Nature. 354 (6348) : 56-58.
  7. Biercuk, M.J., et al. 2002. Carbon nanotube composites for thermal management. Appl. Physics letters. 80(15):2767-2769.
  8. Choa, Y.H., et al. 2003. Preparation and characterization of metal. 266 (1-2): 12-19.
  9. Alexandure, M. and P. Dubois. 2000. Polymer-layered silicate nanocomposites : Preparation, properties and uses of a new class of materials. Mater. Sci. Eng., 28:1-63.
  10. Wypych, F., et al. 1997. Preparation of nanocom-posites based on the encapsulation of conducting polymers into 2H-MoS2and IT-TiS2. Quimica Nova. 20 (4): 356-360.
  11. Pandey, J.K., et al. 2005. Recent advances in biodegradable nanocomposites. J. Nanosci. Nano-tech., 5(4):497-526.
  12. Sternitzke, M. 1997. Review : Structural ceramic nanocomposites. J. European Ceramic Soc., 17(9): 1061-1082.
  13. Gangopadhyay, R. and D. Amitabha. 2000. Conducting polymer nanocomposites : A brief overview. Chem. Mater., 12(7):608-622.
  14. Ray, S.S. and M. Okamoto. 2003. Polymer-layered silicate nanocomposites : A review from preparation to processing. Progress Polymer Sci., 28(11): 1539-1641.
  15. Pandey, J.K., et al. 2005. An overview on the degradability of polymer nanocomposites. Polymer Degradation Stability. 88(2):234-250.
  16. Fernando, W. and K.G. Satyanarayana. 2005. Functionalization of single layers and nanofibres : A new strategy to produce polymer nanocom-posites with optimized properties. J. Colloid Interface Sci., 285 (1):532-543.
  17. Theng, B.K.G. 1974. The chemistry of clay organic reactions. Wiley, New York.
  18. Ogawa, M. and K. Kuroda. 1997. Preparation of inorganic composites through intercalation of organoammoniumions into layered silicates. Bull. Chem. Soc. Japan. 70(11):2593-2618.
  19. Thostenson, E.T., Z. Ren and T.W. Chou. 2001. Advances in the science and technology of carbon nanotubes and their composites : A review. Composites Sci. Tech., 61(13):1899-1912.
  20. Nakahira, A. and K. Niihara. 1992. Structural ceramics-ceramic nanocomposites by sintering method : Roles of nano-size particles. J. Ceramic Soc. Japan. 100(4):448-453.
  21. Ennas, G., et al. 1998. Sol-gel preparation and characterization of Ni-SiO2nanocomposites. J. Non-Crystalline Solids. 232-234:587-593.
  22. Xia, Z., et al. 2004. Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Materialia. 52(4):931-944.
  23. An, J.W., D.H. You and D.S. Lima. 2003. Tribological properties of hot-pressed alumina-CNT composites. Wear. 255(1-6):677-681.
  24. Kamalakaran, R., et al. 2003. In-situ formation of carbon nanotubes in an alumina-nanotube com-posite by spray pyrolysis. Carbon. 41(4):2737-2741.
  25. Baker, C., S. I. Shah and S.K. Hasanain. 2004. Magnetic behaviour of iron and iron-oxide nano-particle/polymer composites J. Magnetism Magnetic Mater., 280 (2-3):412-418.
  26. Yoon, E.S., et al. 2002. Microstructure and sintering behaviour of W-Cu nanocomposite powder produced by thermochemical process. Int. J. Refractory Metals Hazard. Mater., 20(3):201-206.
  27. Branagan, D.J. 2000. In powder metallurgy, particulate materials for industrial applications. Ed D.E.Alman and J.W. Newkirk. TMS Publication, St. Louis.
  28. Branagan, D.J. and Y. Tang. 2002. Developing extreme hardness (>15 Gpa) in iron based nanocomposites. Composites Part A Appl. Sci. Manufacturing. 33(6):855-859.
  29. Chen, W.X., J.Y. Lee and Z. Liu. 2002. Electrochemical lithiation and de-lithiation of carbon nanotube-Sn2Sb nanocomposites. Electrochem. commun., 4(3):260-265.
  30. Jimenez, G., et al. 1997. Structure and thermal/mechanical properties of poly(E-caprolactone) clay blend. J. Appl. Polymer Sci., 64:2211-2220.
  31. Ogata, N., et al. 1997 Structure and thermal/mechanical properties of poly(1-lactide) clay blend. J. Polymer Sci. Part B Polymer physics. 35(2): 389-396.
  32. Gangopadhyay, R. and D. Amitabha. 2000. Conducting polymer nanocomposites : A brief overview. Chem. Mater., 12(7):608-622.
  33. Azioune, A., et al. 1999. Adsorption of human serum albumin onto polypyrrole powder and polypyrrole-silica nanocomposites. Synthetic Metals. 102 (1-3):1419-1420.
  34. Ogasawara, T., et al. 2004. Characterization of multi-walted carbon nanotube/phenylethynyl terminated polyimide composites. Composites Part A Appl. Sci., 35(1):67-74.
  35. Liu, J., et al. 2002. Preparation and characteristic of a new class of silica/polyimide nanocomposites. J. Mater. Sci., 37(14): 3085-3088.
  36. Roslaniec, Z., G. Broza and K. Schulte. 2003. Nanocomposites based on multiblock polyester elastomers (PEE) and carbon nanotubes (CNT). Composite Interfaces. 10(1):95-102.
  37. Kango, S., et al. 2013. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites – A review. Prog. Polym. Sci., 38:1232-1261.
  38. Ray, S. and M. Okamoto. 2003. Polymer/layered silicate nanocomposites : A review from preparation to processing. Prog. Polym. Sci., 28: 1539-1641.
  39. Arora, A. and G.W. Padua. 2010. Review : Nanocomposites in food packaging. J. Food Sci., 75:R43-R49.
  40. Bugnicourt, E., et al. 2016. Recent prospects in the inline monitoring of nanocomposites and nanocoatings by optical technologies. Nanomater., 6:150.
  41. Mittal, V. 2009. Optimization of polymer nanocomposite properties. Wiley-VCH Verlag GmbH and co., Germany.
  42. Rong, M.Z., M.Q. Zhang and W.H. Ruan. 2006. Surface modification of nanoscale filters for improving properties of polymer nanocomposites : A review. Mater. Sci. Tech., 22:787-796.
  43. Fekete, E., et al. 1990. Surface modification and characterization of particulate mineral filters. J. Colloid Interface Sci., 135:200-208.
  44. Xia, H.S. and Q. Wang. 2003. Preparation of conductive polyaniline/nanosilica particle composites through ultrasonic irradiation. J. Appl. Polym. Sci., 87:1811-1817.
  45. Lapshin, S., S.K. Swain and A.I. Isayev. 2008. Ultrasound aided extrusion process for preparation of polyolefin-clay nanocomposites. Polym. Eng. Sci., 48:1584-1591.
  46. Isayev, A. I., C.K. Hong and K. J. Kim. 2003. Continous mixing and compounding of polymer/filter and polymer/polymer mixtures with the aid of ultrasound. Rubber Chem. Tech., 76:923-947.
  47. Duncan, T.V. 2011. Applications of nanotechnology in food packaging and food safety : Barrier materials, antimicrobials and sensors. J. Colloid Interface Sci., 363.
  48. 48. Ndoro, T.V., et al. 2011. Interface of grafted and ungrafted silica nanoparticles with a polystyrene matrix : Atomistic molecular dynamics simulations. Macromolecules. 44:2316-2327.
  49. Yano, K., A. Usuki and A. Okada. 1997. Synthesis and properties of polyimide-clay hybrid films. J. Polym. Sci. Part A. 35:2289-2294.
  50. Geim, A.K. and K.S. Novoselov. 2007. The rise of graphene. Nat. Mater., 6:183-191.
  51. Huang, P.Y., et al. 2011. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature. 469:389-392.
  52. Suk, J.W., et al. 2010. Mechanical properties of monolayer graphene oxide. ACS Nano. 4:6557-6564.
  53. Casiraghi, C., J. Robertson and A.C. Ferrari. 2007. Diamond, like carbon for data and beer storage. Mater. Today. 10:44-53.
  54. Castillo, L., et al. 2013. Thermoplastic starch films reinforced with tale nanoparticles. Carbohydr. Polym., 95:664-674.
  55. Vladimirov, V., et al. 2006. Dynamic mechanical and morphological studies of isotactic polypropylene/fumed silica nanocomposites with enhanced gas barrier properties. Compos. Sci. Tech., 66:2935-2944.
  56. Wen, P., et al. 2016. Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/b-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem. 196:996-1004.
  57. Fabra, M.J., et al. 2015. Development of multilayer corn starch-based food packaging structures containing b-carotene by means of the electro-hydrodynamic processing. Starch/Staerke. 68:603-610.