Removal of Fluoride from Aqueous Solution using Coconut Husk as Bio-Adsorbent

IJEP 42(8): 984-989 : Vol. 42 Issue. 8 (August 2022)

Abhishek Kumar, Anshuman Singh and Nityanand Singh Maurya*

National Institute of Technology, Department of Civil Engineering, Patna – 800 005, Bihar, India


In the present study, fluoride removal from an aqueous solution was performed using coconut husk as an adsorbent. Parametric studies, namely batch isotherm and kinetics, the effect of pH and temperature were performed. Experimental isotherm data were analyzed using Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. Dubinin-Radushkevich was found to be the best-fitted model (R2=0.92) in the present study. Adsorption kinetics indicated that adsorption equilibrium was reached within 75 min. The adsorption kinetics was also well described by the pseudo second order kinetics with R2=0.92. The optimum conditions of fluoride adsorption were found to be pH 7 and temperature 400C.


Adsorption, Biomaterials, Groundwater, Defluoridation, Isotherm, kinetics


  1. Singh, K.P., et al. 2006. Indo-Gangetic alluvium region. Env. Monit. Assess., 112:211-230. DOI: 10. 1007/s106 61-006-0357-5.
  2. Kumar, K.K. 2011. Geomorphological impact assessment on groundwater quality and fluoride genesis along the Bay of Bengal of Visakhapatnam district. Clean Soil Air Water. 39(10):925-930. DOI: 1002/clen.201000520.
  3. Sundaram, C.S. and S. Meenakshi. 2009. Fluoride sorption using organic-inorganic hybrid-type ion exchangers. J. Colloid Interface Sci., 333(1):58-62. DOI: 10.1016/j.jcis.2009.01.022.
  4. Chen, N., et al. 2011. Investigations on the batch and fixed-bed column performance of fluoride adsorption by Kanuma mud. Desalination. 268(1-3):76-82. DOI: 10.1016/j.cej.2010.09.053.
  5. Maliyekkal, S.M., et al. 2008. Enhanced fluoride removal from drinking water by magnesia-amended activated alumina granules. Chem. Eng. J., 140: 183-192. DOI: 10.1016/j.cej.2007.09.049.
  6. Gebrawold, B.D., et al. 2018. Fluoride removal from groundwater using chemically modified rice husk and corn cob activated carbon. Env. Tech., 40(22): 2913-2927. DOI: 10.1080/09593330.20 18.1459871.
  7. L.S. 1898. About the theory of so-called adsorption of soluble substances. Handlingar. 24:1.
  8. Blanchard, G., M. Maunaye and G. Martin. 1984. Removal of heavy metals from waters. Water Res., 18(12):1501-1507. DOI: 10.1016/0043-1354 (84)90124-6.
  9. Yadav, A.K., et al. 2013. Removal of fluoride from aqueous solution and groundwater by wheat straw, sawdust and activated bagasse carbon of sugarcane. Ecol. Eng., 52:211-218. DOI: 10.1016/j.ecoleng.2012. 12.069.
  10. Weber Jr., W.J. and J.C. Morris. 1964. Equilibria and capacities for adsorption of carbon. J. Sanit. Eng. Div., 90(3):79-108. DOI: 10.1061/JSEDAI. 0000496.
  11. Rajkumar, S., et al. 2015: Low-cost fluoride adsorbents prepared from a renewable biowaste: Syntheses characterization and modelling studies. Arab. J. Chem., 12(8): 3004-3017. DOI: 10.1016/jarabjc.2015.06.028.
  12. Sun, Q. and L. Yang. 2003. The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Res., 27(821):1535-1544.
  13. Namasivayam, C. and R. Yamuna. 1995. Waste biogas residual slurry as an adsorbent for the removal of Pb (II) from aqueous solution and radiator manufacturing industry. Bioresour. Tech., 52:125-131.
  14. Mahramanlioglu, M., I. Kizifclkli and I.O. Bicer. 2002. Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth. J. Fluor. Chem., 115:41-47.
  15. Freundlich, H.M.F. 1906. Over the adsorption in solution. J. Phy. Chem., 57:385-471.
  16. Sivasankar, V., et al. 2012. Influence of shaking or stirring dynamic methods in the defluoridation behaviour of activated tamarind fuel shell carbon. Chem. Eng. J., 197:162-172. DOI: 10.1016/j.cej.2012.05.023.
  17. Bering, B.P., M.M. Dubinin and V.V. Serpinsky. 1972. On thermodynamics of adsorption in micro-pores. J. Colloid Interface Sci., 38(1):185-194. DOI: 10.1016/0021-9797(72)90233-0.
  18. Viswanathan, N. and S. Meenakshi. 2009. Colloids and surfaces B: Biointerfaces synthesis of Zr (IV) entrapped chitoson polymeric matrix for selective fluoride sorption. Colloids Surfaces B Biointerface. 72:88-93. DOI: 10.1016/j.Colsurfb.2009.03.021.
  19. Mullick, A. and S. Neogi. 2018. Ultrasonics-sonochemistry acoustic cavitation reduced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption. Ultrason. Sonochem., 45(January):65-77. DOI: 10.1016/j.ultsoncb.2018.03.002.
  20. Alagumuthu, G. and M. Rajan. 2010. Equilibrium and kinetics of adsorption of fluoride onto zirconium impregnated cashew nut-shell carbon. Chem. Eng. J., 158(3):451-457. DOI: 10.1016/j.cej.2010. 01.017.
  21. Montoya, V.H., et al. 2011. Optimizing the removal of fluoride from water using new carbons obtained by modification of nutshell with a calcium solution from eggshell. Biochem. Eng. J., 62:1-7. DOI: 10.1016/j.bej. 2011.12.011.
  22. Ghosh, S.B. and N.K. Mondal. 2019. Environmental nanotechnology, monitoring and management application of Taguchi method for optimizing the process parameters for the removal of fluoride by Al-impregnated eucalyptos bark ash. Env. Nano-tech. Monit. Manage., 11(December):100206. DOI: 10.1016/j.enmm.2018.100206.
  23. Guerrero, A.V., et al. 2016. Fluoride removal by aluminium-modified pine sawdust: Effect of competitive ions. Ecol. Eng., 94:365-379. DOI: 10.10 16/j.ecoleng.2016.05.070.
  24. Mariappan, R., R. Vairamuthu and A. Ganapathy. 2015. Use of chemically activated cotton nutshells carbon for the removal of fluoride contaminated drinking water: Kinetics evaluation. Chinese J. Chem. Eng., 23(4):710-721. DOI: 10.1016/j.cjche. 2014.05.019.
  25. Tirkey, P., T. Bhattacharya and S. Chakraborty. 2017. Optimization of fluoride removal from aqueous solution using jamun (Syzygium cumini) leaf ash. Process Saf. Env. Prot., 115:125-138. DOI: 10.1016/j.psep.2017. 10.022.
  26. Singh, K., D.H. Lataye and K.L. Wasewar. 2017. Removal of fluoride from aqueous solution by using bael (Aegle marmelos) shell activated carbon: Kinetic, equilibrium and thermodynamic study. J. Fluor. Chem., 194:23-32. DOI: 10.1016/j.fluchen. 2016.12.009.
  27. Mereta, S.T. 2017. Biosorption of fluoride ion from water using the seeds of the cabbage tree (Moringa stenopetala). African J. Env. Sci. Tech., 11 (January): 1-10. DOI: 10.5897/ATEST 2016.2197.