Vermicomposting of Water Hyacinth Employing Perionyx annulatus: An Indigenous Earthworm Species of India

IJEP 43(10): 889-898 : Vol. 43 Issue. 10 (October 2023)

Hemen Deka1*, Priya Borah1 and Jyotismita Das2

1. Gauhati University, Department of Botany, Guwahati – 781 014, Assam, India
2. Nowgong College (Autonomous), Department of Zoology, Nowgong – 782 001, Assam, India

Abstract

The present investigation aimed to study the potentiality of indigenous earthworm species Perionyx annulatus (Michaelson) for vermicomposting of noxious aquatic macrophytes water hyacinth in two seasonal trials: summer and winter of 2020-2021. The experiment was carried out in earthen pots taking water hyacinth and cow dung as the substrate in the proportion of 5:1. The results revealed that P. annulatus can effectively convert the substrate materials into fine homogenous end products (that is vermicompost) after 120 days of experimental trials. The vermicompost samples showed significant reduction in C/N ratio, enhancement in ash content and nutrient content. Further, FTIR spectroscopic evaluation of vermicompost samples showed reduction in aliphatic components and increase in nitrogen enrich compounds. Seasonal variation plays a significant role in overall vermicomposting process and there was higher production of vermicompost, earthworm cocoons, population and biomass in summer than in winter period.

Keywords

Perionyx annulatus, Biomanagement, Water hyacinth, Potential, Seasonal influence

References

  1. Gupta, R., et al. 2007. Development of a water hyacinth based vermireactor using an epigeic earthworm Eisenia fetida. Bioresour. Tech., 98:2605-2610. DOI: 10.1016/j.biortech.2006.09.007.
  2. Sindhu, R., et al. 2017. Water hyacinth a potential source for value addition: An overview. Bioresour. Tech., 230:152-162. DOI: 10.1016/j.biortech. 2017 .01.035.
  3. Gajalakshmi, S., E.V. Ramasamy and S.A. Abbasi. 2002. High-rate composting vermicomposting of water hyacinth (Eichhornia crassipes (Mart.) solms). Bioresour. Tech., 83:235-239. DOI: 10.1016/S096 0-8524(01)00216-4.
  4. Malik, A. 2007. Environmental challenge vis-a-vis opportunity: The case of water hyacinth. Env. Int., 33(1): 122-138. DOI: 10.1016/j.envint.2006. 08.004.
  5. Tchobanoglous, G. and F.L. Burton. 1999. Wastewater engineering: Treatment, disposal and reuse. Tata McGraw Hill Publishing Company Limited, New Delhi. pp 13-34.
  6. Newete, S.W. and M.J. Byrne. 2016. The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth. Env. Sci. Poll. Res., 23(11):10630-10643. DOI: 10.1007/s11356-016-6329-6#citeas.
  7. Singh, J. and A.S. Kalamdhad. 2013. Reduction of bioavailability and leachability of heavy metals during vermicomposting of water hyacinth. Env. Sci. Poll. Res., 20(12): 8974-8985. DOI: 10.1016/j.eco leng.2011.10.015.
  8. Gajalakshmi, S., E.V. Ramasamy and S.A. Abbasi. 2001. Assessment of sustainable vermiconversion of water hyacinth at different reactor efficiencies employing Eudrilus eugeniae Kingberg. Bioresour. Tech., 83: 131-135. DOI: 10.1016/S0960-8524(01) 00077-3.
  9. Varma, V.S., A.S. Kalamdhad and M. Khwairkpam. 2016. Feasibility of Eudrilus eugeniae and Perionyx excavatus in vermicomposting of water hyacinth. Eco. Eng., 94:127-135. DOI: 10.1016/S0960-8524 (00)00133-4.
  10. Julka, J.M. 1993. Earthworm resources of India and their utilization in vemiculture. In Earthworm resources and vermiculture. Zoological Survey of India, Calcutta, India. pp 51-56.
  11. Julka, J.M., R. Paliwal and P. Kathireswari. 2009. Biodiversity of Indian earthworms– An overview. Indo-US Workshop on Vermitechnology in human welfare. Coimbatore. Proceedings, pp 36–56.
  12. Karmegam, N. and T. Daniel. 2009. Growth, reproductive biology and life cycle of the vermico-mposting earthworm, Perionyx ceylanensis Mich. (Oligochaeta: Megascolecidae). Bioresour. Tech., 100: 4790-4796. DOI: 10.1016/j.biortech. 2009. 05.004.
  13. Deka, H., et al. 2011a. Vermicomposting of distillation waste of citronella plant (Cymbopogon winterianus Jowitt.) employing Eudrilus eugeniae. Bioresour. Tech., 102(13): 6944–6950. DOI: 10.10 16/j.biortech.2011.04.027.
  14. Deka, H., et al. 2011b. Vermicomposting potentiality of Perionyx excavatus for recycling of waste biomass of Java citronella- An aromatic oil yielding plant. Bioresour. Tech., 102 (24) : 11212–11217. DOI: 10.1016/j.biortech.2011.09.102.
  15. Suthar S., P.K. Mutiyar and S. Singh. 2012. Vermi-composting of milk processing industry sludge spiked with plant wastes. Bioresor. Tech., 116: 214-219. DOI: 10.1016/j.biortech.2012.03.101.
  16. Yadav, K.D., V. Tare and M.M. Ahammed. 2010. Vermicomposting of source-separated human faeces for nutrient recycling. Waste Manage., 30 (1): 50-56. DOI: 10.1016/j.wasman.2009.09.034.
  17. Vig, A.P., et al. 2011. Vermicomposting of tannery sludge mixed with cattle dung into valuable manure using earthworm Eisenia fetida (Savigny). Bioresour. Tech., 102: 7941-7945. DOI: 10.1016/j.biortech.20 11.05.056.
  18. Nelson, D.W. and L.E. Sommers. 1982. Total carbon and organic carbon and organic matter. In Method of soil analysis. Ed A.L. Page, R.H. Miller and D.R. Keeney. American Society of Agronomy, Madison. pp 539–579.
  19. Jackson, M.L. 1975. Soil chemical analysis. Prentice Hall of India, New Delhi. pp 183-226.
  20. APHA. 1998. Standard methods for the examination of water and wastewater (19th edn). American Public Health Association, Washington.
  21. Gupta, R. and V.K. Garg. 2009. Vermiremediation and nutrient recovery of non-recyclable paper waste employing Eisenia fetida. J. Hazard. Mater., 162: 430–439. DOI: 10.1016/j.jhazmat.2008. 05.055.
  22. Wong, W.S., et al. 2020. Plant biostimulants in vermicomposts: Characteristics and plausible mechanisms (chapter 6). In The chemical biology of plant biostimulants. Ed Danny Geelen and Lin Xu. pp 155-180. DOI: 10.1002/9781119357254.ch6.
  23. Cao, W., et al. 2016. Assessing the changes in E. coli levels and nutrient dynamics during vermicom-posting of food waste under lab and field scale conditions. Env. Sci. Poll. Res., 23:23195–23202. DOI: 10.1007/s11356-016-7528-x.
  24. Das, D. and H. Deka. 2021. Vermicomposting of harvested waste biomass of potato crop employing Eisenia fetida: Changes in nutrient profile and assessment of the maturity of the end products. Env. Sci. Poll. Res., 28(27):35717-35727.
  25. Yadav, A. and V.K. Garg. 2011. Recycling of organic waste by employing Eisenia fetida. Bioresour. Tech., 102: 2874-2880. DOI: 10.1016/j.biortech. 2010.10.083.
  26. Boruah, T., et al. 2019. Vermicomposting of citronella bagasse and paper mill sludge mixture employing Eisenia fetidaBioresour. Tech., 294: 122147. DOI: 10.1016/j.biortech. 2019.122147.
  27. Singh, D. and S. Suthar. 2012. Vermicomposting of herbal pharmaceutical industry solid wastes. Ecol. Eng., 39:1-6. DOI:10.1016/j.ecoleng.2011.10.015.
  28. Hu, X., et al. 2021. Pilot-scale vermicomposting of sewage sludge mixed with mature vermicompost using earthworm reactor of frame composite structure. Sci. Total Env., 767: 144217. DOI: 10.10 16/j.scitotenv.2020.144217.
  29. Khwairakpam, M. and R. Bhargava. 2009a. Bioconversion of filter mud using vermicomposting employing two exotic and one local earthworm species. Bioresour. Tech., 100: 5846-5852. DOI: 10.1016/j.biortech.2009.06.038.
  30. Khwairakpam, M. and R. Bhargava. 2009b. Vermi-technology for sewage sludge recycling. J. Hazard. Mater., 161: 948-954.
  31. Nagar, M.R., A. Titov and P. Bhati. 2017. Vermi-composting of green eucalyptus leaf litter by Eisenia foetida and Eudrilus eugenia.Int. J. Env. Agric. Biotech., 2(6): 238970.
  32. Azizi, A.B., et al. 2013. Vermiremoval of heavy metal in sewage sludge by utilizing Lumbricus rubellus. Ecotoxicol. Env. Saf., 90:13-20. DOI: 10.1016/j.ecoenv.2012.12.006.
  33. Bhat, S. A., J. Singh and A.P. Vig. 2015. Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost. Springerplus. 4(1):1-9. DOI: 10.118 6/s40064-014-0780-y.
  34. Garg, V.K. and R. Gupta. 2011. Optimization of cow dung spiked pre-consumer processing vegetable waste for vermicomposting using Eisenia fetida. Ecotoxicol. Env. Saf., 74: 19–24. DOI: 10.1016/j.ecoenv.2010.09.015.
  35. Ananthavalli, R., et al. 2019. Seaweeds as bioresources for vermicompost production using the earthworm, Perionyx excavatus (Perrier). Bioresour. Tech., 275: 394-401. DOI: 10.1016/j.biortech. 2018.12.091.
  36. Suthar, S. 2009a. Vermicomposting of vegetable-market solid waste using Eisenia fetida: Impact of bulking material on earthworm growth and decomposition rate. Ecol. Eng., 35: 914-920. DOI: 10.1 016/j.ecoleng.2008.12.019.
  37. Lim, S. L., et al. 2012. Biotransformation of rice husk into organic fertilizer through vermicompo-sting. Ecol. Eng., 41: 60-64. DOI: 10.1016/j.ecole ng.2012.01.011.
  38. Tripathi, G. and P. Bhardwaj. 2004. Decomposition of kitchen waste amended with cow manure using an epigeic species (Eisenia fetida) and an anecic species (Lampito mauritii). Bioresour. Tech., 92 (2): 215-218. DOI: 10.1016/j.biortech.2003. 08.013.
  39. Suthar, S. 2009b. Vermistabilization of municipal sewage sludge amended with sugarcane trash using epigeic Eisenia fetida (oligochaeta). J. Hazard. Mater., 163:199-206. DOI: 10.1016/j.jhazmat.20 08.06.106.
  40. Song, X., et al. 2014. Heavy metal and nutrient changes during vermicomposting animal manure spiked with mushroom residues. Waste Mana-ge., 34(11): 1977-1983. DOI: 10.1016/j.wasman. 2014.07.013.
  41. Sohal, B., S.A. Bhat and A.P. Vig. 2021. Vermi-remediation and comparative exploration of physico-chemical, growth parameters, nutrients and heavy metals content of biomedical waste ash via ecosystem engineers Eisenia fetida. Ecotoxicol. Env. Saf., 227: 112891. DOI: 10.1016/j.ecoenv. 2021. 112891.
  42. Suthar, S. 2010a. Pilot-scale vermireactors for sewage sludge stabilization and metal remediation process: Comparison with small-scale vermireactors. Ecol. Eng., 36: 703-712. DOI: 10.1016/j.ecoleng. 2009.12.016.
  43. Wang, K., et al. 2018. Bioaccumulation of heavy metals in earthworms from field contaminated soil in a subtropical area of China. Ecotoxicol. Env. Saf., 148: 876-883. DOI: 10.1016/j.ecoenv.2017. 11.058.
  44. Suthar, S. 2010b. Recycling of agro-industrial sludge through vermitechnology. Ecol. Eng., 36: 1028-1036. DOI: 10.1016/j.ecoleng.2010.04.015.
  45. Alidadi, H., et al. 2016. Waste recycling by vermi-composting: Maturity and quality assessment via dehydrogenase enzyme activity, lignin, water soluble carbon, nitrogen, phosphorous and other indica-tors. J. Env. Manage., 182: 134-140. DOI: 10.101 6/j.jenvman.2016.07.025.
  46. Lv, B., et al. 2018. Effects of C/N ratio and earthworms on greenhouse gas emissions during vermi-composting of sewage sludge. Bioresour. Tech., 268:408-414. DOI: 10.1016/j.biortech.2018 .08.004.
  47. Morais, F.M.C. and C.A.C. Queda. 2003. Study of storage influence on evolution of stability and maturity properties of MSW composts. 4th International Conference of ORBIT Association on Biological processing of organics: Advances for a sustainable society (part II). Perth, Australia.
  48. Wang, L., et al. 2013. Impact of flyash and phosphatic rock on metal stabilization and bioavailability during sewage sludge vermicomposting. Bioresour. Tech., 136: 281-287. DOI: 10.1016/j.biortech.201 3.03.039.
  49. Pavia, D.L., G.M. Lampman and G.S. Kriz. 2015. Infra-red spectroscopy (chapter 2). In Introduction to spectroscopy (3rd edn). Cengage Learning. pp 29-72.
  50. Ravindran, B., et al. 2013. Instrumental evidence for biodegradation of tannery waste during vermi-composting process using Eudrilus eugeniae.J. Therm. Anal. Calorim., 111(3):1675-1684. DOI: 10. 1007/s10973-011-2081-9#citeas.
  51. Ahmed, R. and H. Deka. 2022. Vermicomposting of patchouli bagasse- A byproduct of essential oil industries employing Eisenia fetida. Env. Tech. Innov., 25: 102232. DOI: 10.1016/j.eti.2021.102232.
  52. Smidt, E. and K. Meissl. 2007. The applicability of Fourier-transform infra-red spectroscopy in waste management. Waste Manage., 27:268-276. DOI: 10.1016/j.wasman.2006.01.016.
  53. Arumugam, K., et al. 2017. Investigation on paper cup waste degradation by bacterial consortium and Eudrillus eugeinea through vermicomposting. Waste Manage., 74:185-193. DOI: 10.1016/j.wasman. 2017.11.009.