Application of SWAT model for water balance component analysis: The case of Bah River Basin, Madhya Pradesh, India

IJEP 43(11): 972-986 : Vol. 43 Issue. 11 (November 2023)

Shohrat Ali1, Birendra Bharti1*, H.P. Singh1 and R. K. Jaiswal2

1. Central University of Jharkhand, Department of Civil Engineering, Ranchi – 835 222, Jharkhand, India
2. National Institute of Hydrology, WALMI Campus, CIHRC, Bhopal – 462 016, Madhya Pradesh, India


The Bah river basin (BRB) requires special attention in the management of water resources for sustainability in agriculture and the diminution of flood hazards. The hydrological modelling tool, the soil and water assessment tool (SWAT) was selected and setup in the Bah river basin, Madhya Pradesh. The calibration was done using the model on a daily time basis during the period 1989 to 2005, 2 years of the warm period from 1989 to 1990 were taken and the validation data of 8 years (2006-13) was used. For calibration, uncertainty analysis and sensitivity of the model, SWAT-calibration and uncertainty programmes (SWAT-CUP) were used, following sequential uncertainty fitting (SUFI-2) technique. The performance of the model for the studied catchment area was assessed on four statistical standards. The assessment showed an appreciable performance for calibration as well as validation periods and satisfactory agreement among measured value and simulated value. According to the results obtained from sensitivity analysis, the hydrological process in the studied catchment is highly affected by six parameters. These parameters are ALPHA_BF, CH_K2, CN2, GW_DELAY, SHALLST and GW_REVAP. From 23 sub-catchments of the BRB, the average surface runoff is 500.05 mm. Around 31-55% of the precipitation is lost by evapotranspiration. The results of the study would be beneficial for the water managers, the hydrological community and all those involved in soil conservation, agricultural water management and also in planning for reducing the impact of natural hazards, like floods and droughts.


Soil and water assessment tool, Sequential uncertainty fitting-2 algorithm, Surface runoff, Water balance


  1. Sophocleous, M. 2002. Interactions between groundwater and surface water: The state of the science. Hydrogeol. J., 10(1): 52-67. DOI: 10.1007/s10040-001-0170-8.
  2. Srivastava, P.K., et al. 2013a. Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application. Water Resour. Manage., 27(8): 3127-3144. DOI: 10.1007/S11269-013-0337-9.
  3. Blöschl, G. and M. Sivapalan. 1995. Scale issues in hydrological modelling: A review. Hydrol. Processes. 9(3-4):251-290. DOI: 10.1002/HYP.3360 090305.
  4. Strayer, D.L., et al. 2003. What kind of spatial and temporal details are required in models of heterogeneous systems. Oikos. 102(3): 654-662. DOI: 10.1034/J.1600-0706.2003.12184.X.
  5. Patel, D.P., et al. 2014. Application of geo-spatial technique for flood inundation mapping of low lying areas. Remote Sens. Appl. Env. Res., 113–130. DOI: 10.1007/978-3-319-05906-8_7.
  6. Patel, D.P. and P.K. Srivastava. 2013. Flood hazards mitigation analysis using remote sensing and GIS: Correspondence with town planning scheme. Water Resour. Manage., 27(7): 2353-2368. DOI: 10.1007/S11269-013-0291-6.
  7. Narsimlu, B., A.K. Gosain and B.R. Chahar. 2013. Assessment of future climate change impacts on water resources of upper Sind river basin, India using SWAT model. Water Resour. Manage., 27(10): 3647-3662. DOI: 10.1007/S11269-013-0371-7.
  8. Patel, D.P., et al. 2012. Water harvesting structure positioning by using geo-visualization concept and prioritization of mini-watersheds through morphometric analysis in the lower Tapi basin. J. Indian Soc. Remote Sensing. 40(2): 299-312. DOI: 10.1007/S12524-011-0147-6.
  9. Srivastava, P., S. Mukherjee and M. Gupta. 2008. Groundwater quality assessment and its relation to landuse/land cover using remote sensing and GIS. International groundwater conference on groundwater use – Efficiency and sustainability: Groundwater and drinking water issues. Jaipur, India. Proceedings, pp 19-22.
  10. Srivastava, P., et al. 2013. Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. J. Hydrol., 498:292-304.
  11. Arnold, J.G., et al. 1998. Large area hydrologic modelling and assessment. part I: Model development. J. American Water Resour. Assoc., 34(1): 73-89. DOI: 10.1111/J.1752-1688.1998.TB059 61.X.
  12. Spruill, C., S. Workman and J. Taraba. 2000. Simulation of daily and monthly stream discharge from small watersheds using the SWAT model. Transactions ASAE. 43(6): 1431-1439. DOI: 10.13031/2013.3041.
  13. Zhang, X., R. Srinivasan and M.L.H.P. An. 2010. On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model. Hydrol. Process., 24(8):955-969.
  14. Batelis, S. and I. Nalbantis. 2014. Potential effects of forest fires on streamflow in the Enipeas river basin, Thessaly, Greece. Env. Process., 1:73–85. DOI: 10.1007/s40710-014-0004-z.
  15. Rosenthal, W.D. and D.W. Hoffman. 1999. Hydrologic modellings/GIS as an aid in locating monitoring sites. Transactions ASAE. 42(6): 1591-1598. DOI: 10.13031/2013.13324.
  16. Fiseha, B. M., et al. 2014. Impact of climate change on the hydrology of upper Tiber river basin using Bias corrected regional climate model. Water Resour. Manage., 28(5): 1327-1343. DOI: 10.1007/S11269-014-0546-X.
  17. Srinivasan, R., X. Zhang and J.A.T.U. Asabe. 2010. SWAT ungauged: Hydrological budget and crop yield predictions in the upper mississippi river basin. Transactions ASABE. 53(5): 1533-1546. DOI: 10.13031/2013.34903.
  18. Gosain, A., S. Rao and D. B. 2006. Climate change impact assessment on hydrology of Indian river basins. Curr. Sci., 90(3):346-353.
  19. Arnold, J.G. and P.M. Allen. 1996. Estimating hydrologic budgets for three Illinois watersheds. J. Hydrol., 176(1-4): 57-77.
  20. Santhi, C., et al. 2006. A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas. Env. Model. 21(8): 1141-1157.
  21. Beck, M.B. 1987. Water quality modelling: A review of the analysis of uncertainty. Water Resour. Res., 23(8):1393-1442. DOI: 10.1029/WR023I00 8P01393.
  22. Beven, K. and A. Binley. 1992. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process., 6(3):279-298. DOI: 10.1002/HYP.3360060305.
  23. Yatheendradas, S., et al. 2008. Understanding uncertainty in distributed flash flood forecasting for semiarid regions. Water Resour. Res., 44(5): 5-19. DOI: 10.1029/2007WR005940.
  24. Blower, S. and H. Dowlatabadi. 1994. Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example. Int. Statistical Review. 62(2): 229-243.
  25. Derwent, R. and O. Hov. 1988. Application of sensitivity and uncertainty analysis techniques to a photochemical ozone model. J. Geophys. Res., 93 (D5): 5185-5199. DOI: 10.1029/JD093ID05P0 5185.
  26. Adelman, H.M. and R.T. Haftka. 1986. Sensitivity analysis of discrete structural systems. AIAA J., 24(5):823-832. DOI: 10.2514/3.48671.
  27. Blasone, R. and H. Madsen. 2008. Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling. J. Hydrol., 353(1-2):18-32.
  28. Srivastava, P.K., et al. 2013b. Sensitivity and uncertainty analysis of mesoscale model downscaled hydrometeorological variables for discharge prediction. Hydrol. Process., 28(15): 4419-4432. DOI: 10.1002/hyp.9946.
  29. Wagener, T. and H. Wheater. 2006a. Parameter estimation and regionalization for continuous rainfall-runoff models including uncertainty. J. Hydrol., 320(1):132-154.
  30. Zheng, Y. and A.A. Keller. 2007. Uncertainty assessment in watershed-scale water quality modeling and management: 1. Framework and application of generalized likelihood uncertainty estimation (GLUE) approach. Water Resour. Res., 43(8): 8407. DOI: 10.1029/2006.
  31. Vanrolleghem, P. A., et al. 2003. A comprehensive model calibration procedure for activated sludge models. 76th Annual Conference of the Water Environment Federation. Proceedings.
  32. Gupta, H., K. J. Beven and T. Wagener. 2006. Model calibration and uncertainty estimation. Encyclopedia Hydrol. Sci., DOI: 10.1002/0470848944.HSA 138.
  33. Srivastava, P., et al. 2013. Data fusion techniques for improving soil moisture deficit using SMOS satellite and WRF-NOAH land surface model. Water Resour. Manage., 27(15): 5069-5087. DOI: 10.10 07/S11269-013-0452-7.
  34. Wagener, T. and H.V Gupta. 2005. Model identification for hydrological forecasting under uncertainty. Stochastic Env. Res. Risk Assess., 19(6): 378-387. DOI: 10.1007/S00477-005-0006-5.
  35. Vrugt, J.A., et al. 2008. Treatment of input uncertainty in hydrologic modelling: Doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour. Res., 44(12). DOI: 10.1029/2007 WR006720.
  36. Yang, J., et al. 2008. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe basin in China. J. Hydrol., 358(1-2): 1-23.
  37. Abbaspour, K., et al. 2004. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J., 3(4), 1340-1352.
  38. Abbaspour, K. 2007. SWAT-CUP: SWAT calibration and uncertainty programmes- A user manual. Ewag Swiss Federal Institute of Aquatic Science and Technology.
  39. Rostamian, R., et al. 2008. Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran. Hydrol. Sci. J., 53(5): 977-988. DOI: 10.1623/hysj.53.5.977.
  40. Tang, J., et al. 2012. Simulation on the inflow of agricultural non-point sources pollution in Dahuofang reservoir catchment of Liao river. J. Jilin University. 42:1462-1468.
  41. Halefom, A., et al. 2017. Hydrological modelling of urban catchment using semi-distributed model. Model. Earth Systems Env., 3(2):683-692. DOI: 10.1007/s40808-017-0327-7.
  42. Himanshu, S.K., A. Pandey and P. Shrestha. 2017. Application of SWAT in an Indian river basin for modelling runoff, sediment and water balance. Env. Earth Sci., 76(1). DOI: 10.1007/s12665-016-6316-8.
  43. Kumar, N., et al. 2017. SWAT model calibration and uncertainty analysis for streamflow prediction of the Tons river basin, India, using sequential uncertainty fitting (SUFI-2) algorithm. Model. Earth Systems Env., 3(1). DOI: 10.1007/s40808-017-03 06-z.
  44. Kumar, N., et al. 2018. Investigation of impacts of landuse/land cover change on water availability of Tons river basin, Madhya Pradesh, India. Model. Earth Systems Env., 4(1):295-310. DOI: 10.1007/s40808-018-0425-1.
  45. Manaswi, C.M. and A. Thawait. 2014. Application of soil and water assessment tool for runoff modeling of Karam river basin in Madhya Pradesh. Int. J. Sci. Eng. Tech., 3(5):529-532.
  46. Pandey, A., et al. 2021. A soil water assessment tool (SWAT) modelling approach to prioritize soil conservation management in river basin critical areas coupled with future climate scenario analysis. Air Soil Water Res., 14. DOI: 10.1177/1178622 1211021395.
  47. Kurbah, S. and M.K. Jain. 2017. Rainfall-runoff modelling of a river basin using SWAT model. Int. J. Eng. Res., V6(12). DOI: 10.17577/ijertv6is 120 111.
  48. Shivhare, V., M.K. Goel and C.K. Singh. 2014. Simulation of surface runoff for upper Tapi sub-catchment area (Burhanpur watershed) using SWAT. Int. Arch. Photogrammetry Remote Sens. Spatial Info. Sci., XL-8(1): 391-397. DOI: 10.5194/isprsarchives -XL-8-391-2014.
  49. Suryavanshi, S., A. Pandey and U.C. Chaube. 2017. Hydrological simulation of the Betwa river basin (India) using the SWAT model. Hydrol. Sci. J., 62(6): 960-978. DOI: 10.1080/02626667.2016.12714 20.
  50. Teshome, F.T., et al. 2020. Modelling stream flow using SWAT model in the Bina river basin, India. J. Water Resour. Prot., 12(3):203-222. DOI: 10.4236/jwarp.2020.123013.
  51. Tiwari, D., H.L. Tiwari and R. Saini. 2018. Hydrological modelling in Narmada basin using remote sensing and GIS with SWAT model and runoff prediction in Patan watershed. Int. J. Adv. Res. Ideas Innov. Tech., 4(2): 344-352.
  52. Kumar, S., et al. 2009. Streamflow trends in Indiana: Effects of long-term persistence, precipitation and subsurface drains. J. Hydrol., 374(1-2): 171-183. DOI: 10.1016/j.jhydrol.2009.06.012.
  53. Nayak, T.R., M.K. Choudhary and V.K. Pandram. 2016. Modelling the crop water requirement using CROPWAT: A case study of Samrat Ashok Sagar (Halali) project command. India Water Week 2016, Ministry of Water Resources, Government of India, New Delhi, India.
  54. Neitsch, S., et al. 2001. Soil and water assessment tool- User’s manual (version 2000). Texas Water Resources Institute, College Station, Texas, USA.
  55. Neitsch, S., et al. 2005. Soil and water assessment tool- Input/output file documentation (version 2005). Texas Water Resources Institute, College Station, Texas, USA.
  56. Ritchie, J. 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res., 8(5):1204-1213. DOI: 10.1029/WR0 08i005p01204.
  57. Priestley, C.H.B. and R.J. Taylor. 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review. 100(2):81-92. DOI: 10.1175/1520-0493 (1972)100<0081:otaosh>;2.
  58. Hargreaves, G.L., G.H. Hargreaves and J.P. Riley. 1985. Agricultural benefits for Senegal river basin. J. Irrigation Drainage Eng., 111(2):113-124. DOI: 10.1061/(ASCE)0733-9437(1985)111: 2(113).
  59. Monteith, J.L. 1965. Evaporation and environment. Symposia Soc. Experimental Biol., 19:205-234.
  60. Arnold, J. G., P.M. Allen and G. Bernhardt. 1993. A comprehensive surface-groundwater flow model. J. Hydrol., 142(1-4): 47-69.
  61. Hooghoudt, S.B. 1940. Contribution to the knowledge of narrow natural features of the ground. Versl Landbouwkd Ondrez. 46:515-717.
  62. Patel, D.P., C.A. Gajjar and P.K. Srivastava. 2013. Prioritization of Malesari mini-watersheds through morphometric analysis: A remote sensing and GIS perspective. Env. Earth Sci., 69(8):2643-2656. DOI: 10.1007/S12665-012-2086-0.
  63. Wagener, T. and H. Wheater. 2006b. Parameter estimation and regionalization for continuous rainfall-runoff models including uncertainty. J. Hydrol., 320(1):132-154.
  64. Yadav, S.K., et al. 2014. Morphometric analysis of upper Tons basin from northern foreland of peninsular India using CARTOSAT satellite and GIS. Geocarto Int., 29(8): 895-914. DOI: 10.1080/1010 6049.2013.868043.
  65. Singh, S., et al. 2014. Appraisal of landuse/land cover of mangrove forest ecosystem using support vector machine. Env. Earth Sci., 71(5):2245-2255.

      DOI: 10.1007/s12665-013-2628-0.

  1. Srivastava, P., et al. 2012. Selection of classification techniques for landuse/land cover change investigation. Adv. Space Res., 50(9):1250-1265.
  2. Cherie, N. 2013. Downscaling and modelling the effects of climate change on hydrology and water resources in the upper Blue Nile river basin, Ethiopia. Ph.D Thesis. Department of Civil Engineering, University of Kassel.
  3. Moriasi, D.N., et al. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions ASABE. 50 (3): 885-900.
  4. Legates, D.R. and G.J. McCabe Jr. 1999. Evaluating the use of ‘goodness of fit’ measures in hydrologic and hydroclimatic model validation. Water Resour. Res., 35(1):233-241. DOI: 10.1029/1998 WR900018.
  5. Van Liew, M.W., J. Arnold and J.D. Garbrecht. 2003. Hydrologic simulation on agricultural watersheds: Choosing between two models. Transactions ASABE. 46(6):1539-1551. DOI: 10.13031/2013. 15643.
  6. Santhi, C., et al. 2001. Validation of the SWAT model on a large river basin with point and non-point sources. J. American Water Resour. Assoc., 37(5): 1169-1188. DOI: 10.1111/J.1752-1688. 2001.TB0 3630.X.
  7. Nash, J. E. and J.V. Sutcliffe. 1970. River flow forecasting through conceptual models. part I – A discussion of principles. J. Hydrol., 10(3):282-290. DOI: 10.1016/0022-1694(70)90255-6.
  8. Gupta, H., et al. 1999. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng., 4(2). DOI: 10.1061/(ASCE)1084-0699(1999)4:2(135).
  9. Singh, J., et al. 2005. Hydrological modelling of the Iroquois river watershed using HSPF and SWAT. J. American Water Resour. Assoc., 41(2): 343-360. DOI: 10.1111/J.1752-1688.2005. TB03740.X.
  10. Yen, H., et al. 2019. IPEAT+: A built-in optimization and automatic calibration tool of SWAT+. Water. 11(8): 1-17. DOI: 10.3390/w110 81681.
  11. Abbaspour, K.C. 2015. SWAT calibration and uncertainty programmes- A user manual. Swiss Federal Institute of Aquatic Science and Technology, Eawag, Switzerland.
  12. Jaiswal, R.K., et al. 2020. Water balance modelling of Tandula (India) reservoir catchment using SWAT. Arabian J. Geosci., 13(4). DOI: 10.1007/s12517-020-5092-7.
  13. Narsimlu, B., et al. 2015. SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari river basin, India, using sequential uncertainty fitting. Env. Processes. 2(1):79-95. DOI: 10.1007/s40710-015-0064-8.
  14. Singh, L. and S. Saravanan. 2020. Simulation of monthly streamflow using the SWAT model of the Ib river watershed, India. Hydrol. Res., 3:95-105. DOI: 10.1016/j.hydres.2020.09.001.
  15. Ghoraba, S.M. 2015. Hydrological modelling of the Simly dam watershed (Pakistan) using GIS and SWAT model. Alexandria Eng. J., 54(3):583-594. DOI: 10.1016/j.aej.2015.05.018.
  16. Goswami, S. and S. Kar. 2017. Simulation of water cycle components in the Narmada river basin by forcing SWAT model with CFSR data. Meteorol. Hydrol. Water Manage., 6(1):13-25. DOI: 10.26491/mhwm/76250.
  17. Panda, C., et al. 2021. Spatio-temporal modelling of surface runoff in ungauged sub-catchments of Subarnarekha river basin using swat. Mausam. 72 (3):597-606. DOI: 10.54302/mausam.v72i3. 1309.