A Review on the Sources and Impacts of Radon Air Pollution in Bangladesh: a Current Approach

IJEP 43(8): 757-762 : Vol. 43 Issue. 8 (August 2023)

Rayhan Alam* and Juwel Hosen

Atomic Energy Research Establishment (AERE), Bangladesh Atomic Energy Commission, Institute of Nuclear Medical Physics, Dhaka, Bangladesh


Radon is a chemical element possessing the properties of naturally occurring radioactivity and emanating from the decomposition of radioactive elements. Radon gas in the soil and rock can easily move into the air, underground water and surface water. Radon is present in both external and internal atmospheres. It is found at low levels in outdoor air and drinking water from rivers and at higher levels in the air in houses and other buildings, alongwith water from underground wells and surface water. Lung cancer is 25% more aggressive in patients who have smoked and been exposed to radon gas. There are many well-known methodologies to mitigate indoor and outdoor radon gas pollution, such as establishing under-floor ventilation systems and concrete sealing through different gaps and cracks in building designs and floors. Alternative approaches should be taken in these areas if elevated radon levels are found. Moreover, the mitigation of radon concentrations in homes and workplaces is an important contribution to the goal of good health for the general population. This article has extensively analyzed more than 60 studies to better understand radon sources, methods for measuring indoor radon concentrations and predictions. About 10 Bangladeshi local studies were analyzed to describe the current radon concentration position and future precautions. Moreover, radon pollution affects human health and the environment and the techniques used to reduce its impact on human health and well-being.


Radon, Indoor air pollution, Health risks, Outdoor air pollution, Water contamination


  1. Lamonaca, F., et al. 2014. Monitoring of indoor radon pollution. 47: 228-233. doi: 10.1016/j.measurement.2013.08.058.
  2. Sahu, P., et al. Radon emanation from low-grade uranium ore. J. Env. Radioact., 126:104-114. doi: 10.1016/j.jenvrad.2013.07.014.
  3. National Research Council (US) Committee. 1999. Health effects of exposure to radon: BEIR VI. National Academies Press, USA. DOI: 10.17226/5499.
  4. Llerena, J.J., et al. 222Rn concentration in public secondary schools in Galicia (Spain). J. Env. Radioact., 101:931-936. doi: 10.1016/j.jenvrad. 2010.06.009.
  5. Petersen, M.L. and T. Larsen. 2006. Cost-benefit analyses of radon mitigation projects. Env. Manage., 81(1):19-26. doi: 10.1016/j.jenvman.2005. 10.005.
  6. Sung, H., et al. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 71(3):209-249. doi: 10.3 322/caac.21660.
  7. Clouvas, A. and S.A. Xanthos. 2012. A comparison study between radon concentration in schools and other workplaces. Prot. Dosimetry. 149(2):207-210. doi: 10.1093/rpd/ncr224.
  8. Iglesias, C. and J. Taboada. 2017. Residential radon in Galicia: A cross-sectional study in a radon-prone area. Radiol. Prot., 37(3). DOI: 10.1088/1361-6498/aa7922.
  9. Darby, S., et al. Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case-control studies. BMJ. 330(7485):223. doi: 10.1136/bmj.38308.47765 0.63.
  10. Blanco-Rodríguez, P., et al. Radon mitigation approach in a laboratory measurement room. Sensors. 17(5):1090. doi: 10.3390/s17051090.
  11. Brugge, D. and R. Goble. 2002. The history of uranium mining and the navajo people. American J. Public Health. 92(9): 1410-1419. doi:10.2105/ajph.92.9. 1410.
  12. Denton, G. and S. Namazi. (PDF). Indoor radon levels and lung cancer incidence on Guam. Procedia Env. Sci., 18:157-166. doi:10.1016/j.proenv.201 3.04. 021.
  13. Harley, J.H. 1953. Sampling and measurement of airborne daughter products of radon. US Ceased Publ., 11(7).
  14. Gruber, V., F.J. Maringer and C. Landstetter. 2009. Radon and other natural radionuclides in drinking water in Austria: Measurement and assessment. Radiat. Isot. 67. doi:10.1016/j.apradiso.200 9.01.056.
  15. Locatelli, R., et al. Atmospheric transport and chemistry of trace gases in LMDz5B: Evaluation and implications for inverse modelling. Geosci. Model Dev., 8:129-150.
  16. Grossi, C., et al. 2017. Study of the main processes driving atmospheric CH4variability in a rural spanish region. Chem. Phys., 1-15. doi: 10.5194/acp-2017-478.
  17. Grossi, C.G., et al. First estimation of CH4fluxes using the 222Rn tracer method over the Central iberian peninsula. WIT Trans. Ecol. Env., 183: 233-244. DOI: 10.2495/AIR140201.
  18. Wada, A., et al. Quantification of emission estimates of CO2, CH4and CO for East Asia derived from atmospheric radon-222 measurements over the western North Pacific. Tellus B Chem. Phys. Meteor., 6(1). doi:10.3402/tellusb. v65i0.18037.
  19. Vogel, F.R., et al. Regional non-CO2greenhouse gas fluxes inferred from atmospheric measurements in Ontario, Canada. J. Integr. Env. Sci., 9:41-55.
  20. Biraud, S., et al. European greenhouse gas emissions estimated from continuous atmospheric measurements and radon 222 at Mace head, Ireland. J. Geophys. Res. Atmos., 105:1351-1366. doi:10.1029/1999JD900821.
  21. Kumar, A.V., et al. 1999. Application of a numerical model for the planetary boundary layer to the vertical distribution of radon and its daughter products. Env., 33: 4717-4726. doi:10.1016/S1352-2310(99)00220-4.
  22. Chambers, S.D., et al. 2016. Atmospheric stability effects on potential radiological releases at a nuclear research facility in Romania: Characterising the atmospheric mixing state. Env. Radioact., 154: 68-82. doi:10.1016/j.jenvrad.2016.01.010.
  23. Galmarini, S. 2006. One year of 222Rn concentration in the atmospheric surface layer. Chem. Phys., 6: 2865-2886. dOI: 10.5194/acp-6-2865-2006.
  24. Vargas, A., et al. 2015. Analysis of the vertical radon structure at the spanish ‘El Arenosillo’ tower station. Env. Radioact., 139:1-17. doi:10.1016/j.jenvrad.2014.09.018.
  25. Chambers, S.D., et al. Quantifying the influences of atmospheric stability on air pollution in Lanzhou, China, using a radon-based stability monitor. Atmos Env., 107:233-243. doi: 10.1016/j.atmosenv.2015.02.016.
  26. Kikaj, D., et al. Characterizing atmospheric controls on winter urban pollution in a topographic basin setting using radon-222. Atmos. Res., 237: 104838. doi:10.1016/j.atmosres.2019.104838.
  27. Mollo, S., et al. 2017. The imprint of thermally induced devolatilization phenomena on radon signal: Implications for the geochemical survey in volcanic areas. J. Int., 211:558-571. doi: 10.1 093/gji/ggx314.
  28. Voltaggio, M., et al. 2006. A methodology for assessing the maximum expected radon flux from soils in northern Latium (Central Italy). Geochem. Health. 28:541-551. doi:10.1007/s10653-006-9051-3.
  29. Ciotoli, G., S. Lombardi and A. Annunziatellis. Geostatistical analysis of soil gas data in a high seismic intermontane basin: Fucino plain, Central Italy. J. Geophys. Res. Solid Earth. 112(B5).
  30. Oh, Y.H. and K.A. Guebuem. 2015. A radon-thoron isotope pair as a reliable earthquake precursor. Rep., 5:13084. doi:10.1038/srep13 084.
  31. Zoran, M., R. Savastru and D. Savastru. 2012. Ground based radon (222Rn) observations in Bucharest, Romania and their application to geophysics. Radioanal. Nucl. Chem., 293: 877-888.
  32. Sainz, C., et al. Description of the behaviour of an aquifer by using continuous radon monitoring in a thermal spa. Sci. Total Env., 543(Pt A):460-466. DOI: 10.1016/j.scitotenv.2015.11.052.
  33. Sainz, C., et al. Continuous monitoring of radon gas as a tool to understand air dynamics in the cave of altamira (Cantabria, Spain). Sci. Total Env., 624:416-423. doi:10.1016/j.scitotenv.20 17.12.146.
  34. Kawada, Y., et al. 2007. Time-scale invariant changes in atmospheric radon concentration and crustal strain before a large earthquake. Nonlinear Process. Geophys., 14:123-130. doi:10.5194/n pg-14-123-2007.
  35. Igarashi, G., et al. Groundwater radon ano-maly before the Kobe earthquake in Japan. Sci., 269 (5220): 60-61. doi:10.1126/science.269. 5220.60.
  36. Castelluccio, M., et al. Using a multi-method approach based on soil radon deficit, resistivity and induced polarization measurements to monitor non-aqueous phase liquid contamination in two study areas in Italy and India. Env. Sci. Poll. Res. Int., 25 (13):12515-12527. doi: 10.1007/s11356-018-1429-0.
  37. Darby, S., et al. Residential radon and lung cancer- Detailed results of a collaborative analysis of individual data on 7148 persons with lung cancer and 14,208 persons without lung cancer from 13 epidemiologic studies in Europe. Scand. J. Work. Env. Health. 32(suppl. 1):1-83.
  38. 2009. WHO handbook on indoor radon: A public health perspective. World Health Organization, Geneva.
  39. Vogiannis, E.G. and D. Nikolopoulos. 2015. Radon sources and associated risk in terms of exposure and dose. Public Health. 2. doi:10.3389/fpubh.2014.00207.
  40. Barros-Dios, J., et al. 2007. Factors underlying residential radon concentration: Results from galicia, Spain. Res., 103(2):185-90. doi: 10.1 016/j.envres.2006. 04.008.
  41. Singh, S., et al. 2002. Radon level in dwellings and its correlation with uranium and radium content in some areas of Himachal Pradesh, India. Int., 28: 97-101. doi: 10.1016/s0160-4120(02)00012-0.
  42. Somlai, J., et al. Radon concentration in houses over a closed Hungarian uranium mine. Sci. Total Env., 367(2-3):653-665. doi: 10.1016/j.scito tenv.2006. 02.043.
  43. Denman, A., et al. 2007. Health implications of radon distribution in living rooms and bedrooms in U.K. dwellings – a case study in Northamptonshire. Int.. 33:999-1011. doi: 10.1016/j.envint.20 07.01.011.
  44. Kropat, G., et al. Major influencing factors of indoor radon concentrations in Switzerland. J. Env. Radioact., 129:7-22. doi: 10.1016/j.jenvrad. 2013. 11.010.
  45. Collins, S.N. 2013. Radionuclide content of sand used for construction in Kakamega county and associated indoor radon diffusion doses. M.Sc. Thesis. Kenyatta University.
  46. Megonigal, J.P., P.E. Brewer and K.L. Knee. 2020. Radon as a natural tracer of gas transport through trees. New Phytol., 225(4):1470-1475. doi: 10.11 11/nph.16292.
  47. Pervin, S., et al. 2018. A study of radon concentration in tap water of Dhaka city. Env. Poll. Manage., 1: 205.
  48. 1994. Memorendum of understanding between the National Oceanic and Atmospheric Administration and The US Environmental Protection Agency concerning the notification and coordination of activities persuant to the comprehensive environmental response, compensation and liability act. O3WEN directive 9295.0-02. National Service Center for Environmental Publications. Accessed on 19 September 2022.
  49. PAHO/WHO. 2011. Guidelines for drinking water quality (4th edn). Pan American Health Organization/World Health Organization. Accessed on 19 September 2022.
  50. Deeba, F., S. Hafizur and K. Zafrul. 2021. Assessment of annual effective dose due to inhalation and ingestion of radon from groundwater at the southeast coastal area, Bangladesh. Prot. Dosimet., 194(2-3):169-177. doi: 10.1093/rpd/ncab096.
  51. Pervin, S., et al. Radon concentration in groundwater of Dhaka city, Bangladesh. Int. J. Eng. Tech. Manage. Res., 5: 61-70. DOI: 10.29121/ijetmr.v5.i11.2018.318.
  52. 2016. A citizen’s guide to radon: The guide to protecting yourself and your family from radon (EPA402/K-12/002). U.S. Environmental Protection Agency.
  53. Chowdhury, M.I., M.R. Chowdhury and M.N. Alam. 2002. Study of radon exhalation from soil to ascertain the elevated levels of background radiation of Bangladesh. , 37:C1-328. doi:10. 1051/radiopro/2002061.
  54. 2021. Sources, effects and risks of ionizing radiation. UNSCEAR 2020/2021 report. Volume II: Scientific annex B- Levels and effects of radiation exposure due to the accident at the Fukushima Daiichi nuclear power station: Implications of information published since the UNSCEAR 2013 report. United Nations Scientific Committee on the Effects of Atomic Radiation, United
  55. Korhonen, P., H. Kokotti and P. Kalliokoskib. 2000. Survey and mitigation of occupational exposure of radon in workplaces. Env., 35:555-562. doi: 10.1016/S0360-1323(99)00048-7.
  56. Deeba, F., S.H. Rahman and M.Z. Kabir. 2020. Radon concentration in soil and groundwater of west coastal area, Bangladesh. Prot. Dosimet., 191(3):341-348. DOI: 10.1093/rpd/ncaa134.
  57. Haque, A.K.F., G.S. Islam and M.R. Uddin. 1991. Indoor and underground radon activity in the northern part of Bangladesh: A preliminary study. J. Radiat. Appl. Instrum. Part Nucl. Tracks Radiat. Measur., 18:341-344. DOI: 10.1016/1359-0189(9 1)90029-H.
  58. Khan, M.A.H. and M.S. Chowdhury. 2008. Radon measurements in some areas in Bangladesh. Measur., 43: S410-S413. doi: 10.1016/j.radmeas.2008.03.050.
  59. Rodríguez, P.B., et al. Radon mitigation approach in a laboratory measurement room. Sens., 17(5): 1090. doi:10.3390/s17051090.
  60. Kokotti, H. 1995. Dependence of radon level on ventilation systems in residences. Ph.D. Thesis. Kuopio University, Finland.