Green Synthesized Silver Nanoparticles Assisted Heavy Metals Remediation Employing Bacillus cereus HD3PAH

IJEP 43(9): 783-789 : Vol. 43 Issue. 9 (September 2023)

Priya Borah, Arpita Borah, Paramita Chakravarty and Hemen Deka*

Gauhati University, Department of Botany, Guwahati – 781 014, Assam, India


Two bacterial candidates, namely Paenibacillus sp. HD1PAH and Bacillus cereus HD3PAH; isolated from the crude oil-contaminated soil, were used for removal of Zn, Mn and Cu in liquid culture environments. The Paenibacillus sp. HD1PAH was used for synthesis of silver nanoparticles (Ag-NPs) whereas Bacillus cereus HD3PAH was employed for removal of Zn, Mn and Cu from liquid culture media. Three treatments were employed during 7 days of experimental trials; one with Bacillus cereus HD3PAH supplemented by silver nanoparticles (Ag-NPs), whereas in the other two, Bacillus cereus HD3PAH and Ag-NPs were employed alone. The results showed maximum reduction in Zn (94.75%), Mn (91.93%) and Cu (91.7%) in Bacillus cereus HD3PAH assisted with Ag-NPs employed treatment. Significantly, the time behavioural growth pattern of bacterial cells revealed a typical diauxic growth curve in presence of Ag-NPs and heavy metals (HMs) indicating the abilities of the bacterium to overcome the stress imposed due to Ag-NPs and HMs. Moreover, results also confirmed Paenibacillus sp. HD1PAH is the suitable source for synthesis of Ag-NPs indicating a size range of 58.7-71.8 nm under DLS alongwith the UV-visible and FTIR spectrum at around 200-400 nm and 2937.347/cm, 2112.531/cm and 1655.632/cm, respectively.


Metal contamination, Bio-removal, Silver nanoparticles, Tolerance, Liquid culture


  1. Li, C., et al. 2022. Heavy metal pollution in coastal wetlands: A systematic review of studies globally over the past three decades. J. Hazard. Mater., 424: 127312. DOI: 10.1016/j.jhazmat.2021.127 312.
  2. Dhal, B., et al. 2013. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard. Mater., 250:272-291. DOI: 10.1 016/j.jhazmat.2013.01.048.
  3. Mishra, S., et al. 2019. Heavy metal contamination: An alarming threat to environment and human health. In Environmental biotechnology: For sustainable future. pp 103-125.
  4. Jaishankar, M., et al. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol., 7:60. DOI:10.2478%2Fintox-2014-0009.
  5. Nouha, K., R.S. Kumar and R.D. Tyagi. 2016. Heavy metals removal from wastewater using extracellular polymeric substances produced by Cloacibac-terium normanense in wastewater sludge supplemented with crude glycerol and study of extracellular polymeric substances extraction by different methods. Bioresour. Tech., 212:120-129. DOI: 10.1 016/j.biortech.2016.04.02.
  6. Jan, A.T., et al. 2015. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci., 16:29592-29630. DOI: 10.3390/ijms161226183.
  7. Rajesh, V. and N. Rajesh. 2018. Biosorption study of cadmium, lead and zinc ions onto halophilic bacteria and reduced graphene oxide. J. Env. Chem. Eng., 6:5053-5060. DOI:10.1016/j.jece.2018. 07.042.
  8. Dermont, G., et al. 2008. Soil washing for metal removal: A review of physical/chemical technologies and field applications. J. Hazard. Mater., 152:1-31. DOI: 10.1016/j.jhazmat.2007.10.043.
  9. Maila, M.P. and T.E. Cloete. 2004. Bioremediation of petroleum hydrocarbons through land farming: Are simplicity and cost-effectiveness the only advantages? Rev. Env. Sci. Biotech.,3(4):349-360. DOI: 10.1007/s11157-004-6653-z.
  10. Lim, M.W., E.V. Lau and P.E. Poh. 2016. A comprehensive guide of remediation technologies for oil contaminated soil- Present works and future directions. Mar. Poll. Bull.,109(1):14-45. DOI: 10.1 016/j.marpolbul.2016.04.023.
  11. Joutey, N.T., et al. 2013. Biodegradation: Involved micro-organisms and genetically engineered microorganisms. Biodegrad., 1: 289-320. DOI: 10. 5772/56194.
  12. Ke, L., et al. 2010. Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenas-trum capricornutum. Bioresour. Tech., 101: 6950-6961. DOI: 10.1016/j.biortech.2010.04.011.
  13. Patel, A.B., et al. 2020. Polycyclic aromatic hydrocarbons: Sources, toxicity and remediation approaches. Front. Microbiol., 2675. DOI: 10.3389/fmicb.2020.562813.
  14. Rizwan, M., et al. 2014. Eco-friendly application of nanomaterials: Nanobioremediation. J. Nanopart., DOI: 10.1155/2014/431787.
  15. Sohail, M. I., et al. 2019. Environmental application of nanomaterials: A promise to sustainable future. InComprehensive analytical chemistry (vol. 87, pp. 1-54). Elsevier. DOI: 10.1016/bs.coac.2019.10.002
  16. Decesaro, A., et al. 2017. Biosurfactants during in-situ bioremediation: Factors that influence the production and challenges in evalution. Env. Sci. Poll. Res., 24(26): 20831-20843. DOI: 10.1007/s11356-017-9778-7.
  17. Taheriniya, S. and Z. Behboodi. 2016. Comparing green chemical methods and chemical methods for the synthesis of titanium dioxide nanoparticles. Int. J. Pharm. Sci., 7:4927.
  18. Lahkar, J. and H. Deka. 2017. Isolation of polycyclic aromatic hydrocarbons (PAHs) degrading fungal candidate from oil-contaminated soil and degradation potentiality study on anthracene. Polycycl. Aromat. Compd.,37:141-147. DOI: 10.1080/10 406638.2016.1220957.
  19. He, S., et al. 2007. Biosynthesis of gold nanopar-ticles using the bacteria Rhodopseudomon ascapsulata. Mater. Lett., 61:3984-3987.DOI: 10.1016/j.matlet. 2007.01.018.
  20. Shahverdi, A.R., et al. 2007. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochem., 42: 919-923. DOI: 10.1016/j.proc bio.2007.02.005.
  21. Mahdieh, M., A. Zolanvari and A.S. Azimee. 2012. Green biosynthesis of silver nanoparticles by Spirulina platensis. Scientia Iranica. 19(3): 926-929. DOI: 10.1016/j.scient.2012.01.010.
  22. Aydin, A., H. Sipahi and M. Charehsaz. 2012. Nano-particles toxicity and their routes of exposures (pp 483-500). In Recent advances in novel drug carrier systems. Ed Ali Demir Sezer. DOI: 10.5772/51230.
  23. Hristozov, D. and J. Malsch. 2009. Hazards and risks of engineered nanoparticles for the environment and human health. Sustain., 1(4): 1161-1194. DOI: 10.3390/su1041161.
  24. Pavia, D.L., G.M. Lampman and G.S. Kriz. 2014. Infrared spectroscopy (chapter 2). In Introduction to spectroscopy (3rd edn). Thomson Learning. pp 29-72.
  25. Wahyono, T., et al. 2019. Fourier transform mid-infrared (FTIR) spectroscopy to identify tannin compounds in the panicle of sorghum mutant lines. Mater. Sci. Eng., 546(4): 042045. DOI: 10.1088/1757-899X/546/4/042045.
  26. Ahmed, R. and H. Deka. 2022. Vermicomposting of patchouli bagasse- A byproduct of essential oil industries employing Eisenia fetida. Env. Tech. Innov., 25:102232. DOI: 10.1016/j.eti.2021.102 232.
  27. Ghoshal, G. and M. Singh. 2022. Characterization of silver nanoparticles synthesized using fenu-greek leave extract and its antibacterial activity. Mater. Sci. Tech., 5: 22-29. DOI: 10.1016/j.mset. 2021. 10.001.
  28. Benzerara, K., et al. 2011. Significance, mechanisms and environmental implications of microbial biomineralization. Comptes Rendus Geosci., 343: 160-167. DOI: 10.1016/j.crte.2010.09.002.
  29. Modi, S., B. Pathak and M.H. Fulekar. 2015. Microbial synthesized silver nanoparticles for decolour-ization and biodegradation of azo dye compound. J. Env. Nanotech., 4(2): 37-46. DOI: 10.13074 /jent.2015.06.152149.
  30. Singh, S., K.C. Barick and D. Bahadur. 2011. Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens. J. Hazard. Mater.,192(3):1539-1547. DOI: 10.1016/j.jha zmat.2011.06.074.
  31. Ivanova, A., et al. 2020. Layer by layer coating of aminocellulose and quorum quenching acylase on silver nanoparticles synergistically eradicate bacteria and their biofilms. Adv. Funct. Mater., 30: 2001284. DOI: 10.1002/adfm.202001284.
  32. Todorova, K., et al. 2019. Novel composite biosor-bent from Bacillus cereus for heavy metals removal from aqueous solutions. Biotech. Equip., 33:730-738. DOI: 10.1080/13102818.2019. 1610066.
  33. Zhu, M., et al. 2022. Effects of environmental factors on the microbial community changes during medium-high temperature Daqu manufacturing. Food Res. Int., 110955. DOI: 10.1016/j.foodres.2022. 110955.
  34. Aka, R.J. and O.O. Babalola. 2017. Identification and characterization of Cr, Cd and Ni-tolerant bacteria isolated from mine tailings. Bioremediat. J., 21:1-19. DOI: 10.1080/10889868.2017.1282 933.
  35. Lok, C.N., et al. 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res., 5:916-924. DOI: 10.1021/pr050 4079.
  36. Smetana, A.B., et al. 2008. Biocidal activity of nanocrystalline silver powders and particles. Langmuir. 24:7457-7464. DOI: 10.1021/la800 091y.
  37. Pérez, R.M., et al. 2010. Combined strategy for the precipitation of heavy metals and biodegradation of petroleum in industrial wastewaters. J. Hazard. Mater., 182:896-902. DOI: 10.1016/j.jhaz mat.2010.07.003.
  38. De Kruijff, B., V. van Dam and E. Breukink. 2008. Lipid II: A central component in bacterial cell wall synthesis and a target for antibiotics. Prostaglandins Leukot. Essent. Fatty Acids. 79:117-121. DOI: 10.1016/j.plefa.2008.09.020.
  39. Li, X., et al. 2014. Biosorption of uranium on Bacillus sp. dwc-2: Preliminary investigation on mechanism. J. Env. Radioact., 135:6-12. DOI: 10.1016/j.jenvrad.2014.03.017.
  40. Nanda, M., V. Kumar and D.K. Sharma. 2019. Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water. Aquat. Toxicol.,212:1-10. DOI: 10.1016/j.aquatox.2019.04.011.
  41. Pandur, Ž., M. Dular and D. Stopar. 2022. Bacterial cell wall material properties determine E. coli resistance to sonolysis. Ultrason Sonochem. 105919. DOI: 10.1016/j.ultsonch.2022.105919.
  42. Priyadarshanee, M. and S. Das. 2021. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. J. Env. Chem. Eng., 9:104686. DOI: 10.1016/j.jece.2020.1046 86.