Importance of Macrophytes-Biofilm Interaction for Abating Pollution in Natural Wetlands: A Review

IJEP 43(9): 822-828 : Vol. 43 Issue. 9 (September 2023)

Rakhi Chahar1, Rana Mukherji2 and Manishita Das Mukherji1*

1. Amity University Rajasthan, Amity Institute of Biotechnology, Jaipur – 303 002, Rajasthan, India
2. The Institute of Chartered Financial Analysts of India (ICFAI) University, ICFAITech, Jaipur – 302 031, Rajasthan India


Wetlands are areas between land and waterbodies that are characterized by shallow, waterlogged soils that are retained onto a diverse range of rich vegetation and fauna. Aquatic macrophytes are plants that are grown in wetlandsand around the temporary zones of surface and streams. Wetland ecosystem which is dominated by aquatic macrophytes is most productive in the world. Suitable habitat for the microbial community formed by the ability of aquatic plants to absorb nutrients and to produce favourable conditions for the degradation of organic matter. The interaction of plant microbes is very common mainly rhizoplane in aquatic ecosystem. To attract the microbes, some organic chemicals contain amino acids, polysaccharides, lipids, phenolic compounds and nucleic acids. The positioning of macrophytes on upper layer of soil provides not only a surface for microbial attachment but also for filtration of water contaminants. This process is enhanced due to the biofilm macrophyte interaction. Leakage from roots into rhizosphere, which is mediated by macrophytes, promotes aerobic decomposition of organic matter and nitrification. This helps in reduction of nutrient load which is a major concern towards wetland pollution. The review paper will further elaborate on the interaction between biofilms and macrophytes and their role in pollution abatement in wetlands.


Biofilm-macrophyte interaction, Pollution abatement, Natural wetlands


  1. Sepehri, A. and M. H. Sarrafzadeh. 2018. Effect of nitrifiers community on fouling mitigation and nitrification efficiency in a membrane bioreactor. Eng. Proces. Process Intens., 128:10-18. DOI: 10. 1016/j.cep.2018.04.006.
  2. Han, B., et al. Characterization of microbes and denitrifiers attached to two species of floating plants in the wetlands of lake Taihu. PLoS One. 13(11). DOI: 10.1371/journal.pone.0207443.
  3. Pang, Y., et al. Cold temperature effects on long-term nitrogen transformation pathway in a tidal flow constructed wetland. Env. Sci. Tech., 49(22): 13550-13557. DOI: 10.1021/acs.est. 5b04002.
  4. Pang, S., et al. Characterization of bacterial community in biofilm and sediments of wetlands dominated by aquatic macrophytes. Ecol. Eng., 97: 242-250. DOI: 10.1016/j.ecoleng.2016.10.011.
  5. Hooper, D.U., et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature. 486(7401):105-108. DOI: 10.1038/nature11118.
  6. Gurnell, A. M., W. Bertoldi and D. Corenblit. 2012. Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth Sci. Reviews. 111(1–2):129-141. DOI: 10.10 16/j.earscirev.2011.11.005.
  7. Hakeem, K.R., R.A. Bhat and H. Qadri. 2020. Bioremediation and biotechnology: Sustainable approaches to pollution degradation. In Bioremediation and biotechnology: Sustainable approaches to pollu-tion degradation. DOI: 10.1007/978-3-030-356910
  8. Gottschall, N., et al. The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada. Ecol. Eng., 29(2):154–163. DOI :10.1016/j.ecoleng. 2006.06.004.
  9. Arthur, E.L., et al. Phytoremediation- An overview. In Critical reviews in plant sciences (vol 24, issue 2). pp 109-122. DOI: 10.1080/0735268059 0952496.
  10. Qadri, H. and R. A. Bhat. 2020. The concerns for global sustainability of freshwater ecosystems. In Freshwater pollution dynamics and remediation. Springer, Singapore. pp 1-13. DOI: 10.1007/978-981-13-827 7-2_1.
  11. Hasan, S.H., M. Talat and S. Rai, 2007. Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichchornia crassipes). Tech., 98(4):918-928. DOI: 10.1016/j.biortech.2006. 02.042.
  12. Mishra, V. K., et al. Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent. Env. Monit. Assess., 141(1–3):49–58. DOI:10.1007/s10661-007-9877-x.
  13. Bhatia, M. and D. Goyal. 2014. Analyzing remedia-tion potential of wastewater through wetland plants: A review. In Environmental progress and sustainable energy. 33(1): 9–27. DOI: 10. 1002/ep.11822.
  14. Lukács, B. A., G. Dévai and B. Tóthmérész. 2009. Aquatic macrophytes as bioindicators of water chemistry in nutrient rich backwaters along the Upper-Tisza river in Hungary. , 39(3):287-293. DOI: 10.1127/0340-269X/2009/0039-0287.
  15. Zhao, D., et al. Mutual promotion of submerged macrophytes and biofilms on artificial macrophytes for nitrogen and COD removal improvement in eutrophic water. Env. Poll., 277. DOI: 10. 1016/j.envpol.2021.116718.
  16. Chen, Q., et al. Different pollutant removal efficiencies of artificial aquatic plants in black-odor rivers. Env. Sci. Poll. Res., 26 (33) : 33946–33952. DOI: 10.1007/s11356-018-2696-5.
  17. Wu, Y.P., Y.B. Wang and Z.B. Wu. 2019. Bromo-criptine-responsive supersellar germinoma with the expression of dopamine receptors: A case report. Clinical Neurol. Neurosurgery. 176:15-18. DOI: 10.1016/j.clineuro.2018.11.006.
  18. Jiang, J., et al. Sediment type, population density and their combined effect greatly charge the short-time growth of two common submerged macrophytes. Eco. Eng., 34(2):79-90. DOI: j.ecol eng.2008.07.003.
  19. Gong, L., et al. Response of biofilms-leaves of two submerged macrophytes to high ammonium. Chemosphere. 192:152-160. DOI: 10.1016/j.che mosphere. 2017.09.147.
  20. Askari, K.O. and M. Shayannejad. 2021. Quantity and quality modelling of groundwater to manage water resources in Isfahan-Borkhar aquifer. Develop. Sustain., 23(11):15943-15959. DOI: 10. 1007/s10668-021-01323-1.
  21. Derakhshannia, M., et al. Corrosion and deposition in Karoon river, Iran, based on hydrometric stations. Int. J. Hydrol. Sci. Tech., 10(4):334-345.
  22. Zhang, W., et al. Determination of vertical and horizontal assemblage drivers of bacterial community in a heavily polluted urban river. Water Res., 161:98-107. DOI:10.1016/j.watres.2019.05.107.
  23. Brislawn, C.J., et al. 2019. Forfeiting the priority effect: Turnover defines biofilm community succession. ISME J., 13(7):1865-1877. DOI: 10.1038/s41396-019-0396-x.
  24. Askari, K.O.A., et al. The evaluation of the usage of the fuzzy algorithms in increasing the accuracy of the extracted landuse maps. Int. J. Global Env. Issues. 17(4):1865-1877.
  25. Butu, A., et al. Global scenario of remediation techniques to combat pesticide pollution. In Bioreme-diation and biotechnology (vol 2). Springer Internatio-nal Publishing. DOI: 10.1007/978-3-030-40333114.
  26. Dar, S. A. and R.A. Bhat. 2020. Aquatic pollution stress and role of biofilms as environment cleanup technology. In Freshwater pollution dynamics and remediation. Springer, Singapore. pp 293-318. DOI: 10.1007/978-981-13-8277-2_16.
  27. Hahn, M. W. 2006. The microbial diversity of inland waters. Opin. Biotech., 17(3):256-261. DOI: 10.1016/j.copbio.2006.05.006.
  28. Zehr, J.P. 2010. Microbes in Earth’s aqueous envir-onments. Direct., 1(July):1-2. DOI: 10.1186/1745-6150-2-30.
  29. Calheiros, C.S.C., et al. Changes in the bacterial community structure in two-stage constructed wetlands with different plants for industrial wastewater treatment. Bioresour. Tech., 100 (13):3228-3235. DOI: 10.1016/j.biortech.2009. 02.033.
  30. Wang, Y., et al. Influence of plant species and wastewater strength on constructed wetland methane emissions and associated microbial populations. Ecol. Eng., 32(1):22-29. DOI: 10.1016/j.ecoleng.2007. 08.003.
  31. Wei, B., et al. Comparison of the community structures of ammonia-oxidizing bacteria and archaea in rhizoplanes of floating aquatic macrophytes. Microbiol. Res., 166(6):468-474. DOI: 10.1016/j.micres. 2010.09.001.
  32. McClellan, K., R. Altenburger and M.S. Jansen. 2008. Pollution-induced community tolerance as a measure of species interaction in toxicity assessment. Appl. Ecol., 45(5):1514-1522. DOI: 10. 1111/j.1365-2664.2008.01525.x.
  33. Thorén, A.K. 2007. Urea transformation of wetland microbial communities. Microbial Ecol., 53(2): 221-232. DOI: 10.1007/s00248-006-9098-9.
  34. Zhao, F., et al. Purifying eutrophic river waters with integrated floating island systems. Ecol. Eng., 40:53-60. DOI: 10.1016/j.ecoleng.2011.12.0 12.
  35. Song, Y.Z., et al. The physiological responses of Vallisneria natans to epiphytic algae with the increase of N and P concentrations in waterbodies. Env. Sci. Poll. Res., 22(11):8480–8487. DOI : 10.1007/s11356-014-3998-x.
  36. Wu, Q., et al. Microbial mechanisms of using enhanced ecological floating beds for eutrophic water improvement. Bioresour. Tech., 211:451-456. DOI: 10.1016/j.biortech.2016.03.113.
  37. Ijaz, A., et al. Enhanced remediation of sewage effluent by endophyte-assisted floating treatment wetlands. Eco. Eng., 84:58-66. DOI: 10.101 6/j.ecoleng.2015.07.025.
  38. Srivastava, J., A. Gupta and H. Chandra. 2008. Managing water quality with aquatic macrophytes. Reviews Env. Sci. Bio/Tech., 7(3)255-266. DOI: 10.1007/s11157-008-9135-x.
  39. Buosi, P.R.B., et al. 2011. Ciliate community associated with aquatic macrophyte roots: Effects of nutrient enrichment on the community composition and species richness. European J. Protistol., 47(2): 86-102. DOI: 10.1016/j.ejop.2011.02.001.
  40. Wu, X., et al. 2007. Bacterial community composition of a shallow hypertrophic freshwater lake in China, revealed by 16S rRNA gene sequences. FEMS Microbiol. Ecol., 61(1):85-96. DOI: 10.1111/j.1574-6941.2007.00326.x.
  41. Davies, L.C., et al. 2006. Aerobic degradation of Acid Orange 7 in a vertical-flow constructed wetland. Water Res., 40(10):2055-2063. DOI: 10.10 16/j.watres.2006.03.010.
  42. Münch, C., et al. 2007. The root surface as the definitive detail for microbial transformation processes in constructed wetlands- A biofilm characteristic. Water Sci. Tech., 56(3):271-276. DOI: 10.2 166/wst.2007.527.
  43. Ahn, C., P.M. Gillevet and M. Sikaroodi. 2007. Molecular characterization of microbial communities in treatment microcosm wetlands as influenced by macrophytes and phosphorus loading. Indicators. 7(4):852-863. DOI: 10.1016/j.ecolind.2006. 10.004.
  44. Stout, L.M. 2006. Influence of plant-associated microbial communitites on heavy metal uptake by the aquatic plant Lemna minor. PhD Thesis. Department of Microbiology, University of Massachusetts Amherst.
  45. Weyens, N., et al. Phytoremediation: Plant-endophyte partnerships take the challenge. Curr. Opin. Biotech., 20(2):248-254. DOI: 10.1016/ pbio.2009.02.012.
  46. Nielsen, L.B., et al. Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows. Env. Microbiol., 3(1): 63-71. DOI:10.1046/j.1462-2920.2001.001 60.x.
  47. Šraj-Kržiè, N., et al. Mycorrhizal colonisation in plants from intermittent aquatic habitats. Aqua. Botany. 85(4): 331-336. DOI: 10.1016/j.aquabot. 2006. 07.001.
  48. Sorrell, B.K., M.T. Downes and C.L. Stanger. 2002. Methanotrophic bacteria and their activity on submerged aquatic macrophytes. Botany. 72(2): 107-119. DOI: 10.1016/S0304-3770(01)00215-7.
  49. Laanbroek, H.J. 2010. Methane emission from natural wetlands: Interplay between emergent macrophytes and soil microbial processes. A mini-review. Annals Botany. 105(1):141-153. DOI: 10.1093/ao b/mcp201.
  50. Muramoto, S. and Y. Oki. 1983. Removal of some heavy metals from polluted water by water hyacinth (Eichhornia crassipes). Env. Contam. Toxicol., 30(1):170-177. DOI: 10.1007/BF01610 117.
  51. Dhote, S. 2007. Role of macrophytes in improving water quality of an aquatic eco-system. Appl. Sci. Env. Manage., 11(4): 133-135.
  52. Mishra, S. and A. Maiti. 2017. The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: A review. Sci. Poll. Res., 24(9):7921-7937. DOI: 10.10 07/s11356-016-8357-7.
  53. Radic, S., et al. Ecotoxicological assessment of industrial effluent using duckweed (Lemna minor L.) as a test organism. Ecotoxicol., 19(1):216-222. DOI: 10.1007/s10646-009-0408-0.
  54. Duong, T.P. and J.M. Tiedje. 1985. Nitrogen fixation by naturally occurring duckweed–Cyanobac-terial associations. Canadian J. Microbiol., 31(4): 27–330. DOI: 10.1139/m85-062.
  55. Cedergreen, N. and T.V. Madsen. 2002. Nitrogen uptake by the floating macrophyte Lemna minor. New Phytol., 155(2):285-292. DOI: 10.1046/j.14 69-8137.2002.00463.x.
  56. Zhang, K., et al. The logistic growth of duckweed (Lemna minor) and kinetics of ammonium uptake. Env. Tech., 35(5): 562-567. DOI: 10.1080/09593330.2013.837937.
  57. Zimmo, O.R., N.P. van der Steen and H.J. Gijzen. 2004. Nitrogen mass balance across pilot-scale algae and duckweed-based wastewater stabili-sation ponds. Water Res., 38(4):913-920. DOI: 10.1016/j.watres.2003.10.044.
  58. Ekperusi, A.O., F.D. Sikoki and E.O. Nwachukwu. 2019. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Chemosphere. 223:285-309. DOI: 10.1016/j.chemosphe re. 2019.02.025.
  59. Samdani, S., C. Kadam and S.S. Baral. 2008. Treatment of Cr (VI) contaminated wastewater using biosorbent, Hydrilla verticillata. J. Eng., 1(IV): 271-282.
  60. Shaikh, P.R. and A.B. Bhosle. 2011. Bioaccu-mulation of chromium by aquatic macrophytes Hydrilla and Chara sp. Adv. Appl. Sci. Res., 2(1): 214–220.
  61. Bunluesin, S., et al. Batch and continuous packed column studies of cadmium biosorption by Hydrilla verticillata biomass. J. Biosci. Bioeng., 103 (6): 509-513. DOI: 10.1263/jbb.103.509.
  62. Srivastava, S. and K.C. Bhainsa. 2016. Evaluation of uranium removal by Hydrilla verticillata (L.f.) Royle from low level nuclear waste under laboratory conditions. Env. Manage., 167:124-129. DOI: 10.101 6/j.jenvman.2015.11.018.
  63. Srivastava, S., et al. Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Eco. Eng., 37(11): 1937-1941. DOI: 10.1016/j.ecoleng.2011. 06.012.
  64. Srivastava, S., et al. Role of thiol metabolism in arsenic detoxification in Hydrilla verticillata (L.f.) Royle. Water Air Soil Poll., 212(1-4):155-165. DOI: 10.1007/s11270-010-0329-9.
  65. Tingting, Z., F. Peicheng and Y. Lirong. 2011. Ammonifying bacteria in plant floating island of constructed wetland for strengthening decomposition of organic nitrogen. pp 2–5.
  66. Shahid, M.J., et al. 2019. Remediation of polluted river water by floating treatment wetlands. Water Sci. Tech. Water Supply. 19(3):967-977. DOI: 10.2 166/ws.2018.154.
  67. Shahid, M.J., et al. Role of microorganisms in the remediation of wastewater in floating treatment wetlands: A review. Sustain., 12(14): 5559. DOI: 10.3390/su12145559.
  68. Wang, L., et al. Effects of a combined biological restoration technology on nitrogen and phosphorus removal from eutrophic water. Polish J. Env. Studies. 27(5): 2293-2301. DOI: 10.15244/pjoes/77609.
  69. Ijaz, A., Z. Iqbal and M. Afzal. 2016. Remediation of sewage and industrial effluent using bacterially assisted floating treatment wetlands vegetated with Typha domingensis. Water Sci. Tech., 74 (9): 2192-2201. DOI: 10.2166/wst.2016.405.