Exploring the Contribution of Microbes to Sustainable Development

IJEP 44(4): 369-378 : Vol. 44 Issue. 4 (April 2024)

Priyanka Choudhary, Varsha Gupta, Ravi Kant Rahi, Deepesh Kumar Neelam and Mansvi Yadav*

JECRC University, Department of Microbiology, Jaipur – 303 905, Rajasthan, India


This review article aims to provide an overview of the recent advances in the use of microbes for sustainable development, focusing on the production of biofuels, crop yields, soil fertility, bioremediation, waste management, healthcare industry and climate change mitigation. Enzymes, biopolymers, biofuels and bioplastics are produced by them, offering environmentally friendly substitutes for goods made from fossil fuels. Pharmaceutical, food and beverage production operations frequently use microbial fermentation techniques to ensure sustainability and minimise environmental effects. In order to achieve sustainable development goals and address global concerns linked to food security, climate change and public health, more research and innovation must be made in harnessing the power of bacteria. The article will also highlight the challenges and limitations associated with sustainable development using micro-organisms and identify future research prospects.


Microbes, Sustainability, Agriculture, Bioremediation


  1. Sunagawa, S., et al. 2015. Structure and function of the global ocean microorganism. Indian J. Env. Prot., 35(7): 105-117.
  2. Dutta, S., S. Saha and P. Sarkar. 2020. Soil microorganism: An overview of its taxonomy, function and its significance. In Microbial biotechnology. Springer, Singapore. pp  105-117. doi: 10.1007/978-981-15-5952-6_6.
  3. Peralta-Yahya, P.P., et al. 2012. Microbial engineering for the production of advanced biofuels. Nature. 488(7411): 320-328.
  4. Hahn-Hägerdal, B., et al. 2006. Bio-ethanol- The fuel of tomorrow from the residues of today. Trends biotech., 24(12): 549-556.
  5. Zhang, Y., et al. 2018. Advances in microbial production of biofuels and biochemicals. Biotech. Adv., 36(3): 672-681.
  6. Bahl, H., et al. 2013. Clostridia: Biotechnology and

      medical applications. Indian J. Env. Prot., 33(2): 105-117.

  1. Fang, C., et al. 2020. Microbial processes for the

      production of biofuels and bioproducts from biowaste. Indian J. Env. Prot., 40(5): 105-117.

  1. Sousa, A. F., C.M.F. Soares and S. Ferreira-Dias. 2020. Biodiesel production using enzymes: An overview. Indian J. Env. Prot., 40(7): 105-117.
  2. Hassan, S.E.D., M.A. Barakat and A.A. Abdelhadi. 2020. Biofertilizers and their role in sustainable agriculture- A review. In Biofertilizers for sustainable agriculture and environment. Springer. pp 1-24.
  3. Schimel, J.P. and S.M. Schaeffer. 2012. Microbial control over carbon cycling in soil. Indian J. Env. Prot., 32(3): 105-117.
  4. Luo, Y., et al. 2019. Micro-organisms for bioreme-diation: An overview of recent advances and future prospects. Indian J. Env. Prot., 39(19): 105-117.
  5. Raaijmakers, J.M. and M. Mazzola. 2016. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Indian J. Env. Prot., 36(11): 105-117.
  6. Olson, D.G., et al. 2012. Recent progress in consolidated bioprocessing. Curr. Opinion Biotech., 23(3): 396-405.
  7. Papanikolaou, S., et al. 2002. Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J. Appl. Microbiol., 92(4): 737-744.
  8. Alvarez, H.M., et al. 2016. Biology of Rhodococcus. Microbiol. Molecular Biol. Reviews. 80(3): 451-509.
  9. Sanginga, N., O. Lyasse and B.B. Singh. 1996. Biological nitrogen fixation in mixed legume and cereal cropping systems of the moist savanna of West Africa. Plant Soil. 182(2): 307-320.
  10. Bashan, Y. and L.E. De-Bashan. 2010. How the plant growth-promoting bacterium Azospirillum promotes plant growth- A critical assessment. Adv. Agron., 108: 77-136.
  11. Fira, D., C. Dimkpa and M. Venkateshwaran. 2018. Editorial: Plant growth-promoting rhizobacteria (PGPR) for sustainable agriculture. Front. Microbiol., 9: 2418.
  12. Vinale, F., K. Sivasithamparam and E.L. Ghisalberti. 2008. Trichoderma plant pathogen interactions. Soil Biol. Biochem., 40(1): 1-10.
  13. Levy, A., et al. 2018. Genomic features of bacterial adaptation to plants. Nature Genetics. 50(1): 138-150.
  14. Al-Ajlani, M.M., et al. 2019. Recent advances in hydrocarbon-degrading bacteria and microbial surfactants for the biodegradation of petroleum pollutants. Chemosphere. 223: 47-70.
  15. Tiwari, M. and R.K. Singh. 2019. Environmental bioremediation technologies: Present and future prospects. In Advances in Bioremediation and Phytoremediation. pp 1-21.
  16. Dhanjal, S., S.S. Cameotra and R.S. Makkar. 2018. Recent developments in bioremediation of industrial pollutants by Actinobacteria. In Bioremediation and Biotechnology. pp 261-283.
  17. Mahmood, F., et al. 2016. Applications of microbial enzymes in dye decolorization. Appl. Sci., 6(1): 17.
  18. Nagajyoti, P.C., K.D. Lee and T.V.M. Sreekanth. 2010. Heavy metals, occurrence and toxicity for plants: A review. Env. Chem. Letters. 8(3): 199-216.
  19. Hill, C., et al. 2014. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Indian J. Env. Prot., 30(8): 105-117.
  20. Van Hoorde, K. and J. Vanderleyden. 2016. Probiotics: From life product to active solution. Microbial Cell Factories. 15(1): 1-8.
  21. Cipolla, A., M. Guido and G. Vitale. 2018. Bacillus clausii for the treatment of acute diarrhoea in children: A systematic review and meta-analysis of randomized controlled trials. Nutrients. 10(8): 1074.
  22. McFarland, L.V. 2010. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J. Gastroenterol., 16(18): 2202-2222.
  23. Turroni, F., et al. 2018. Bifidobacterium bifidum as an example of a specialized human gut commensal. Front. Microbiol., 9: 2774.
  24. Chen, Y., et al. 2019. Identification and characterization of novel aerobic methanotrophs from a coastal environment. Env. Microbiol., 21(6): 2025-2041.
  25. Zhang, Y., et al. 2019. Efficient biodegradation of

      polyethylene by a community of bacteria/yeast consortia. J. Hazard. Mater., 368: 36-44.

  1. Daryaei, H., M. Nosrati and S.H. Razavi. 2015. Role of organic waste compost in increasing yield of mushroom. The 8th National Conference on Recycling of Agricultural, Livestock and Organic Waste. pp 16-17.
  2. Pandey, J., et al. 2017. Degradation of phenanthrene and naphthalene by bacterial strains isolated from oily sludge-contaminated sites. J. Env. Sci. Health Part A. 52(10): 948-957.
  3. Lovley, D.R., et al. 2011. Geobacter: The microbe electric’s physiology, ecology and practical applications. In Advances in microbial physiology (vol 59). Academic Press.
  4. Liu, Y., et al. 2017. A review of remediation technologies for soil contaminated by petroleum hydrocarbons. Indian J. Env. Prot., 37(10): 105-117.
  5. Chen, S., et al. 2017. Lead immobilization by Pseudomonas putida 1A00316 isolated from lead-contaminated soil. Indian J. Env. Prot., 37(2): 105-117.
  6. Rahman, M.T., et al. 2018. Bioremediation of industrial and municipal wastewater: Progress and prospects. Indian J. Env. Prot., 38(10): 105-117.
  7. Rinninella, E., et al. 2019. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet and diseases. Indian J. Env. Prot., 39(1): 105-117.
  8. Gomes, A.C., et al. 2021. The gut microbiota and its relation to depression and anxiety: A review article. Indian J. Env. Prot., 41(1): 105-117.
  9. Kutter, E., et al. 2015. Phage therapy in clinical practice: treatment of human infections. Indian J. Env. Prot., 35(1): 105-117.
  10. Li, S., et al. 2020. Application of micro-organisms in waste treatment and resource recovery. Micro-organisms. 8(10): 1611.
  11. Kumar, R., L. Singh and A.W. Zularisam. 2021. Biodegradation of food waste in the presence of magnetic field: A review of bioenergy production, microbial ecology and technology advancement. Indian J. Env. Prot., 41(11): 105-117.
  12. Choi, M. J., et al. 2021. Microbial fuel cells for sustainable wastewater treatment and energy production. J. Microbiol. Biotech., 31(2): 167-178.
  13. Wang, Y., W. Xiang and Q. Wang. 2021. Biolea-ching of valuable metals from electronic waste by micro-organisms: A review. Bioresour. Tech., 324: 1246.
  14. Sarmah, A. K., M. T. Meyer and A.B. Boxall. 2016. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere. 65(5): 725-759.
  15. Six, J., et al. 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil. 241(2): 155-176.
  16. Shukla, P., N. K. Singh and S. Sharma. 2015. Bioreactors for treatment of industrial wastewater: A critical review. Reviews Env. Sci. Biotech., 14(1): 111-131.
  17. Conrad, R. 2009. The global methane cycle: Recent advances in understanding the microbial processes involved. Env. Microbiol. Reports. 1(5): 285-292.
  18. Gao, Z., et al. 2020. Effects of microbial inoculants on methane emissions and rumen fermentation in goats. J. Animal Sci. Biotech., 11(1):1-9.
  19. Mendez, M.O. and R.M. Maier. 2008. Phytoreme-diation of mine tailings in temperate and arid environments. Reviews Env. Sci. Biotech., 7(1): 47-59.
  20. Bierbaum, G., and H.G. Sahl. 2009. Lantibiotics: Mode of action, biosynthesis and bioengineering. Curr. Pharm. Biotech., 10(1): 2-18.
  21. Vos, M., et al. 2013. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol. Reviews. 37(6): 936-954.
  22. Gross, R. and J. Chu. 2020. Scaling-up microbial fermentation processes. Trends Biotech., 38(11): 1091-1105.
  23. Rooijers, K., et al. 2019. The stringent response as a trigger for microbial cell death in bacterial persisters. Nature Comm., 10(1): 1-10.
  24. Purnick, P.E. and R. Weiss. 2009. The second wave of synthetic biology: From modules to systems. Nature Reviews Molec. Cell Biol., 10(6): 410-422.
  25. Agler, M.T., E.E. Wrenbeck and S.H. Zinder. 2016. Stable isotope probing implicates Methylophaga in methyl-mercury production in periphyton from the Florida everglades. Appl. Env. Microbiol., 82(10): 2898-2909.
  26. Hazen, T.C., et al. 2010. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Sci., 330 (6001): 204-208.
  27. Logan, B.E., et al. 2006. Microbial fuel cells: Methodology and technology. Env. Sci. Tech., 40(17): 5181-5192.