Synthesis of PCC by Carbonation of Waste Calcium Chloride Solution via Gas-Liquid Reaction

IJEP 44(5): 454-464 : Vol. 44 Issue. 5 (May 2024)

Prashant Shrivastava1*, Rajeev Singh2 and Susanta Kumar Jana3

1. Institute of Technology and Management, Department of Chemical Engineering, Gwalior – 475 001, Madhya Pradesh, India
2. Institute of Technology and Management, Department of Chemistry, Gwalior – 475 001, Madhya Pradesh, India
3. Malviya National Institute of Technology, Department of Chemical Engineering, Jaipur – 302 017, Rajasthan, India


A bubbling reactor was employed to synthesize precipitated calcium carbonate (PCC) by carbonating CaCl2, considering the huge discharge of its waste solution from different industries. The maximum conversion of CaCl2 obtained was about 99% and was found to increase with an increase in the superficial gas velocity and CO2 concentration in the feed gas. However, it decreased with an increase in the concentration of CaCl2 in the feed solution. The products were characterized by XRD, SEM and FTIR analyses. In the lower range of superficial gas velocity and CO2 concentration, uniform rhombohedral calcite particles were obtained, while at higher values of these variables, irregular fractured PCC was formed. The average size of product particles was found to be about 2-3 µm. Limitations of synthesis of PCC with the use of a micro-porous gas distributor or by merely mixing the distiller waste with residual mother liquor generated in a soda-ash plant, were also systematically evaluated.


Waste calcium chloride solution, Bubbling reactor, Carbonation, Precipitated calcium carbonate, Calcite


  1. Li, Y., et al. 2015. Preparation of calcium carbonate and hydrogen chloride from distiller waste based on reactive extraction–crystallization process. Chem. Eng. J.,278: 55-61. DOI: 10.1016/j.cej.20 14.12.058.
  2. Söhnel, O. and J.W. Mullin. 1982. Precipitation of calcium carbonate. J. Crystal Growth. 60(2): 239-250. DOI: 10.1016/0022-0248(82)90095-1.
  3. Kawano, J., et al. 2002. Formation process of calcium carbonate from highly supersaturated solution. J. Crystal Growth. 237: 419-423. DOI: 10.1016/S0022-0248(01)01866-8.
  4. Wei, H., et al. 2004. Crystallization habit of calcium carbonate in presence of sodium dodecyl sulfate and/or polypyrrolidone. J. Crystal Growth. 260 (3-4): 545-550. DOI: 10.1016/j.jcrysgro.2003.09. 019.
  5. Hu, Z. and Y. Deng. 2004. Synthesis of needle, like aragonite from calcium chloride and sparingly soluble magnesium carbonate. Powder Tech., 140(1-2): 10-16. DOI: 10.1016/j.powtec.20 04.01. 001.
  6. Wei, H., et al. 2005. On the crystallization of calcium carbonate modulated by anionic surfac-tants. J. Crystal Growth. 279(3-4): 439-446. DOI: 10.1016/j.jcrysgro.2005.02.064.
  7. Chen, Y., X. Ji and X. Wang. 2010. Facile synthesis and characterization of hydrophobic vaterite CaCO3with novel spike, like morphology via a solution route. Mater. Letters. 64(20): 2184-2187. DOI: 10.1016/j.matlet.2010.07.011.
  8. Sarkar, A. and S. Mahapatra. 2010. Synthesis of all crystalline phases of anhydrous calcium carbo-nate. Crystal Growth Design. 10(5): 2129-2135. DOI: 10.1021/cg9012813.
  9. Hadiko, G., et al. 2005. Synthesis of hollow calcium carbonate particles by the bubble templating method. Mater. Letters.59(19-20): 2519-2522. DOI: 10.1016/j.matlet.2005.03.036.
  10. Han, Y.S., et al. 2005. Effect of flow rate and CO2content on the phase and morphology of CaCO3prepared by bubbling method. J. Crystal Growth. 276(3-4): 541-548. DOI: 10.1016/j.jcrysgro.2004.11.408.
  11. Sun, B. C., et al. 2011. Synthesis of nano-CaCO3by simultaneous absorption of CO2and NH3 into CaCl2 solution in a rotating packed bed. Chem. Eng. J., 168(2): 731-736. DOI: 10.1016/j.cej.2011.01.0 68.
  12. Udrea, I., et al. 2012. Vaterite synthesis via gas–liquid route under controlled pH conditions. Ind. Eng. Chem. Res.,51(24): 8185-8193. DOI: 10.1021/ie202221m.
  13. Popescu, M. A., et al. 2014. Thermal decomposition of calcium carbonate polymorphs precipitated in the presence of ammonia and alkyl amines. Adv. Powder Tech.,25(2): 500-507. DOI: 10.1016/j.apt.2013.08.003.
  14. Carmona, J. G., J.G. Morales and R.R. Clemente. 2003. Rhombohedral–scalenohedral calcite transition produced by adjusting the solution electrical conductivity in the system Ca(OH)2–CO2–H2O. J. Colloid Interface Sci.,261(2): 434-440. DOI: 10.1016/S0021-9797(03)00149-8.
  15. Cheng, B., et al. 2004. Preparation of monodisper-sed cubic calcium carbonate particles via precipitation reaction. Mater. Letters.58(10): 1565-1570. DOI: 10.1016/j.matlet.2003.10.027.
  16. Sheng, Y., et al. 2004. Influence of octadecyl dihydrogen phosphate on the formation of active super-fine calcium carbonate. J. Colloid Interface Sci.,272(2): 326-329. DOI: 10.1016/j.jcis.2003.1 1.062.
  17. Jana, S.K. and A.N. Bhaskarwar. 2010. Modelling gas absorption accompanied by chemical reaction in bubble column and foam-bed slurry reactors. Chem. Eng. Sci.,65(11): 3649-3659. DOI: 10.10 16/j.ces.2010.03.009.
  18. Konopacka-Lyskawa, D. and M. Lackowski. 2011. Influence of ethylene glycol on CaCO3particles formation via carbonation in the gas–slurry system. J. Crystal Growth.321(1): 136-141. DOI: 10.101 6/j.jcrysgro.2011.02.018.
  19. Gao, C., et al. 2007. Utilization of distiller waste and residual mother liquor to prepare precipitated calcium carbonate. J. Clean. Prod.,15(15): 1419-1425. DOI: 10.1016/j.jclepro.2006.06.024.
  20. Trypuæ, M. and K. Biaowicz. 2011. CaCO3production using liquid waste from Solvay method. J. Clean. Prod.,19(6-7): 751-756. DOI: 10.1016/j.jclepro.2010.11.009.
  21. Ajikumar, P.K., et al. 2005. Synthesis and characterization of monodispersed spheres of amorphous calcium carbonate and calcite spherules. Crystal Growth Design.5(3): 1129-1134. DOI: 10.1021/cg049606f.
  22. Szczeœ, A., E. Chibowski and L. Hoysz. 2007. Influence of ionic surfactants on the properties of freshly precipitated calcium carbonate. Colloids Surf. A Physicochem. Eng. Aspects.297(1-3): 14-18. DOI: 10.1016/j.colsurfa.2006.10.014.
  23. IS 1314. 1984. Calcium chloride. Bureau of Indian Standards, New Delhi.
  24. Han, Y.S., et al. 2006. Crystallization and transformation of vaterite at controlled pH. J. Crystal Growth.289(1): 269-274. DOI: 10.1016/j.jcrys gro.2005.11.011.
  25. Chibowski, E., A. Szczes and L. Holysz. 2005. Influence of sodium dodecyl sulphate and static magnetic field on the properties of freshly precipitated calcium carbonate. Langmuir. 21(18): 8114-8122. DOI: 10.1021/la050575f.
  26. Spanos, N. and P.G. Koutsoukos. 1998. The transformation of vaterite to calcite: Effect of the conditions of the solutions in contact with the mineral phase. J. Crystal Growth.191(4): 783-790. DOI: 10.1016/S0022-0248(98)00385-6.
  27. López-Periago, A.M., et al. 2010. A breakthrough technique for the preparation of high-yield precipitated calcium carbonate. J. Supercritical Fluids. 52(3): 298-305. DOI: 10.1016/j.supflu.2009. 11.014.